• Title/Summary/Keyword: Organic electroluminescent devices

Search Result 138, Processing Time 0.023 seconds

Studies on The Optical and Electrical Properties of Europium Complex (Europium compound박막의 전기적 광학적 특성에 관한 연구)

  • 이명호;표상우;김영관;김정수;이한성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.317-320
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic materials have been of great interest due to their possible applications for large-area flat-panel displays, where they are attractive because of their capability of multicolor emission, and low operation voltage. In this study, glass substrate/ITO/Eu(TTA)$_3$(Phen)/Al(A), glass substrate/ITO/TPD/Eu(TTA)$_3$(phen)/Al(B) aNd glass substrate/ITO/TPD/Eu(TTA)$_3$(Phen)/A1Q$_3$/Al (C) structures were fabricated by vacuum evaporation method, where aromatic diamine(TPD) was used as a hole transporting material, Eu(TTA)$_3$(phen) as an emitting material, and tris(8-hydroxyquinoline) Aluminum (AlQ$_3$) as an electron transporting layer. Etectroluminescent(EL) and I-V characteristics of Eu(TTA)$_3$(phen) with a various thickness were investigated. This structure shows the red EL spectrum, which is almost the same as the PL spectrum of Eu(TTA)$_3$(phen). I-V characteristics of this structure show that turn-on voltage was 9V and current density was 0.01A/㎤ at a dc operation voltage of 9V. Electrical transporting phenomena of these structures was explained using the trapped-charge-limited current model with I-V characteristics.

  • PDF

Characteristics of OLEDs Using $Alq_2-Ncd\;and\;Alq_2-Nq$ as Emitting Layer ($Alq_2-Ncd$$Alq_2-Nq$를 이용한 유기전기발광 소자의 특성)

  • Yang, Ki-Sung;Shin, Hoon-Kyu;Kim, Chung-Kyun;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.447-450
    • /
    • 2003
  • In this paper, new luminescent material, 6,11-dihydoxy-5,12-naphtacene-dione Alq3 complex (Alq2-Ncd), 1,4-dihydoxy-5,8-naphtaquinone Alq3 complex(Alq2-Nq) was synthesized. And extended efforts had been made to obtain high-performance electroluminescent(EL) devices, since the first report of organic light-emitting diodes(OLEDS) based on tris-(8-hydroxyquinoline) aluminum(Alq3). We have performed investigate characterization of the materials. Current-voltage characteristics, luminance-voltage characteristics and luminous efficiency were measured by Flat Panel Display Analysis System(Model 200-AT) at room temperature. An intensive research is going on to improve the device efficiency using the hole injection layer, different electrodes, and etc. By using the hole injection layer, the charge-injection can be controlled and the stability could be improved. This study indicates not only the sterical effect but also some other effects would be responsible for the change of the emission wavelength.

  • PDF

Electroluminescent Properties of White Light-Emitting Device Using Photoconductive Polymer and Anthracene Derivatives (광전도성 고분자와 안트라센 유도체를 이용한 백색 전계발광소자의 발광 특성)

  • Lee Jeong-Hwan;Choi Hee-Lack;Lee Bong
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.543-547
    • /
    • 2005
  • Organic electroluminescence devices were made from 1,4-bis-(9-anthrylvinyl)benzene (AVB) and 1,4-bis-(9-aminoanthryl)benzene (AAB) anthracene derivatives. Device structure was ITO/AVB/PANI(EB)/Al (multi-layer device) and ITO/AAB:DCM/Al(single-layer device). In these devices, AVB, polyaniline(emeraldine base) (PANI(EB)) and AAB were used as the emitting material. 4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H -pyran(DCM) was used as red fluorescent dopant. We studied change of fluorescence wavelength with concentration of DCM doped in AAB. The ionization potential (IP) and optical band gap (Eg) were measured by cyclic voltammetry and UV-visible spectrum. We compared with difference of emitting wavelength between photoluminescence and electroluminescence spectrum. In case of the multi-layer device, PANI and AVB EL spectra have similar wave pattern to each PL spectrum and when PAM and AVB were used at the same time, and multi-layer device showed that a balanced recombination and radiation kom PANI and AVB. In case of the single-layer device, with the increase of DCM concentration, the blue emission decreases and red emission increases. This indicates that DCM was excited by the energy transfer from AAB to DCM or the direct recombination at the dopant sites due to carrier trapping, or both. The device with $1.0wt\%$ DCM concentration gave white light.

Study on the Emission Properties of Visible Light Source using Energy Transfer (에너지전달을 이용한 가시광 Light Source의 발광특성에 관한 연구)

  • Gu, Hal-Bon;Kim, Ju-Seung;Kim, Jong-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1212-1217
    • /
    • 2004
  • Red organic electroluminescent (EL) devices based on tris(8-hydroxyquinorine aluminum) (Alq$_3$) doped with red emissive materials, 4-(dicyanomethylene)-2-t-butyl -6-(l,1,7,7-tetramethyljulolidyl-9-enyl)4H-pyran (DCJTB). poly(3-hexylthiophene) (P3HT). rubrene and 4-dicyanomethylene-2-methyl-6[2-(2,3.6.7-tetrahydro-lH,5H-benzo-[i,j]quinolizin-8yl)vinyl]-4H-pyran (DCM2) were fabricated for applying to the red light source, The photoluminescence (pL) intensities of red emissive materials doped in Alq$_3$ are limited by the concentration quenching with increasing the doping ratio and the doping concentration of DCJTB, DCM2, P3HT and rubrene measured at the maximum intensity showed 5, 1, 0.5 and 2 wt%, respectively. Time-resolved PL dynamic results showed that the PL lifetime of red emissive materials doped in Alq$_3$ were increased more than the value of material itself. It means that the efficient energy transfer occurred in the mixed state and Alq$_3$ is a suitable host materials for red emissive materials, The device which was used DCJTB as a dopant achieved the best result of the maximum luminance of 594 cd/$m^2$ at 15 V and showed the chromaticity coordinates of x=0,624, y=0,371.

The Fabrication an dCharacteristic Analysis with Novel High Efficiency Organic Polymer Green Electroluminescence (새로운 고효울 유기 폴리머 녹색발광소자의 제작 및 특성 분석)

  • Oh, Hwan-Sool
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.12
    • /
    • pp.1-7
    • /
    • 2001
  • Single-layer polymer green electroluminescent devices were fabricated with novel material synthesis by using moleculely-dispersed TTA and NIDI into the polymer PC(B79) emitter layer doped with C6 fluorescent dye which has low operating voltage and high quantum efficiency. A EL cell structure of glass substrate/indium-tin-oxide/PC:TTA:NIDI:C6/Ca/Al was employed and compared with various low work function cathode electrodes Ca and Mg metals. By adjusting the concentration of the fluorescent dye C6, low turn-on voltage of 2.4V was obtained, maximum quantum efficiency of 0.52% at 0.08mole% has been improved by about a factor of ~50 times in comparison with the undoped cell. The PL and EL colors can't be turned by changing the concentration of the C6 dopant. PL emission peaking was obtained at 495nm and EL emission peaking at 520nm with FWHM ~70nm

  • PDF

Thin Film Transistor Backplanes on Flexible Foils

  • Colaneri, Nick
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.529-529
    • /
    • 2006
  • Several laboratories worldwide have demonstrated the feasibility of producing amorphous silicon thin film transistor (TFT) arrays at temperatures that are sufficiently low to be compatible with flexible foils such as stainless steel or high temperature polyester. These arrays can be used to fabricate flexible high information content display prototypes using a variety of different display technologies. However, several questions must be addressed before this technology can be used for the economic commercial production of displays. These include process optimization and scale-up to address intrinsic electrical instabilities exhibited by these kinds of transistor device, and the development of appropriate techniques for the handling of flexible substrate materials with large coefficients of thermal expansion. The Flexible Display Center at Arizona State University was established in 2004 as a collaboration among industry, a number of Universities, and US Government research laboratories to focus on these issues. The goal of the FDC is to investigate the manufacturing of flexible TFT technology in order to accelerate the commercialization of flexible displays. This presentation will give a brief outline of the FDC's organization and capabilities, and review the status of efforts to fabricate amorphous silicon TFT arrays on flexible foils using a low temperature process. Together with industrial partners, these arrays are being integrated with cholesteric liquid crystal panels, electrophoretic inks, or organic electroluminescent devices to make flexible display prototypes. In addition to an overview of device stability issues, the presentation will include a discussion of challenges peculiar to the use of flexible substrates. A technique has been developed for temporarily bonding flexible substrates to rigid carrier plates so that they may be processed using conventional flat panel display manufacturing equipment. In addition, custom photolithographic equipment has been developed which permits the dynamic compensation of substrate distortions which accumulate at various process steps.

  • PDF

A Study on the Various Organic Electroluminescent Devices Using Lanthanide Chelate Metal Complexes (란탄계 금속 착화합물을 이용한 다양한 유기 전기 발광 소자의 연구)

  • 표상우;이한성;김정수;이승희;김영관
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.529-532
    • /
    • 1999
  • 본 연구에서는 유기 전기 발광 소자에서 녹색 발광층으로 사용되는 terbium(Tb) complexes와 europium(Eu) complex, 정공 수송층으로 사용되는 TPD (N, N\`-diphenyl-N,\`(3-methylphenyl)-1, 1\`biphenyl-4, 4\`-diamine), 그리고 전자 수송층으로 사용되는 Alq$_{3}$ (trois(8-hydroxyquinolino)aluminum), Bebq$_2$들의 Uv/Vis. 홉광도와 PL 스펙 트럼과 같은 광학적 특성을 조사하였으며 또한 이러한 물질들을 이용하여 다양한 종류의 유기 전기 발광 소자를 제작하고 제작된 소자들의 전류밀도-전압-조도 등의 전기 . 광학적 특성을 조사하였으며, 그 결과 다 음과 같은 결곤을 얻을 수 있었다. 다양한 ligand를 갖는 Tb complex들의 경우에도 EL 스펙트럼의 파장대 (wavelength)는 546nm~548nm의 녹색 발광을 하는 것을 알 수 있었고, 제작된 소자 중에서 Tb(ACAC)$_3$(Phen) 을 발광충으로 하고, TPD, 그리고 Bebq$_2$를 각각 정공 수송층, 전자 수송 층으로 한 소자가 가장 낮은 구동 전압을 갖는다는 것을 확인하였으며 logJ-logV 특성에서도 모든 전계 구간에서 이러한 구조의 소자가 가장 높은 전류밀도를 나타냈으며 저 전계 구간에서 전류밀도 타이가 가장 컸다. 소자의 전류밀도와 휘도의 관계에 있어서는 제작된 네 종류의 소자 중 Tb(ACAC)3(Cl-Phen)를 발광층으로 하고 TPD, 그리고 Bebq2를 각각 정공 수송층, 전자 수송 층으로 한 소자가 가장 휘도가 우수한 것을 알 수 있었다. 또한 red (europium complex), green (terbium complex), 그리고 blue (TPD) 색깔을 나타내는 유기 재료를 사용하여 한 소자에서 백색 소자를 제작하여 cyclic voltametric방법을 이용하여 각 유기 물질들의 에너지 준위를 조사하여, 각각의 소자들을 에너지 밴드 다이어그램(energy band diagram)으로 자세히 설명하였다.

  • PDF

Synthesis and Characteristics of Diphosphine-digold complexes as Light-Emitting Materials (발광 재료용 다이포스핀-다이골드 착물의 합성과 특성 연구)

  • Kim, Jun-Ho;Sohn, Byung-Chung;Ha, Yun-Kyoung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.103-107
    • /
    • 2002
  • Diphosphine dinuclear gold(I) complexes were synthesized from the reaction of bridged diphosphines and gold ions. As a bridged diphosphine, 1,2-bis(diphenylphosphino)metbane (dppm) or 1,1'-Bis(diphenylphosphino) ferrocene (dppf) was introduced. As anionic ligands, CI was first coordinated to Au, resulting in (diphosphine)$(AuCl)_{2}$. Then, the ligand, SPh, was substituted for Cl in the chloride complex to give (diphosphine)$(AuSPh)_{2}$. As a result, three digold complexes, (dppm)$(AuCl)_{2}$. (I), (dppf)$(AuCl)_{2}$. (II), and (dppf)$(AuSPh_{2}$. (III) were prepared in this study. The thermal properties were investigated at first hand to confirm that the gold complexes were in fact formed. The digold complexes were decomposed above $200^{\circ}C$ while the ligand, dppm or dppf, melts under $180^{\circ}C$ The photoluminescence (PL) spectra of the spin-coated thin films showed the maximum peak at 590, 595, and 540nm for the complex, I, II, and III, respectively. These complexes were found to give the orange color phosphorescence. Therefore, these digold complexes can be candidates for orange-red phosphorescent materials in organic electroluminescent devices (OELD). Further studies on application of the complexes as a dopant in an emitting layer are in progress in our laboratory.