• Title/Summary/Keyword: Organic dyes

Search Result 196, Processing Time 0.021 seconds

Studies on the Rapid Discrimination of Yellow Pigments Colored on Yellow Croakers and Natural Yellow Pigment of Croakers (참조기의 천연색소와 인위적으로 착색된 황색색소류 판별법에 관한 연구)

  • Kim, Hee-Yun;Hong, Jin-Hwan;Kim, Dong-Sul;Han, Sang-Bae;Lee, Eun-Ju;Lee, Jeung-Seung;Kang, Kil-Jin;Chung, Hyung-Wook;Song, Kyung-Hee;Park, Hye-Kyung;Park, Jong-Seok;Kwon, Yong-Kwan;Chin, Myung-Shik;Park, Hee-Ok;Oh, Sae-Hwa;Shin, Il-Shik;Lee, Chang-Kook;Park, Hee-Yul;Ha, Sang-Chul;Jo, Jae-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.977-983
    • /
    • 2002
  • This study was performed to establish the precise and rapid method to distinguish croakers through the pigment analysis of colored imported white croakers for adultration. We surveyed the coloring behaviors, extraction test by water and organic solvent and using pigments such as targeting, curcumine, and azo dye products. The pigment of yellow croaker is not stained on wet cloth or tissue which is rubbed on epidermis of yellow croaker and was not eluted in water extraction test, while adulterated pigments were easily extracted by water and acetone, but edible diluted yellow, Yellow No. 4 and Yellow No. 5 were not extracted. Reactive pigment was detected easily by extraction with water and dispersed pigment was also detected by extraction test. As a result of discoloring characteristics of carotene having similar structure to yellow croaker and azo dye by oxidation and reduction, azo dyes were not discolored by oxidation with sodium percarbonate or peracetic acid but that were discolored by oxidation with Fenton reagent after 1hr and by hypochlorite promptly. On the other hand, carotenes were not discolored by sodium precarbonate and Fenton reagent but discolored by sodium hypochlorite after 2 hr and by peracetic acid promptly. Azo dyes were discolored by reduction with sodium hydrosulfite and sodium carbonate but carotenes were not discolored by these reagents. This discoloring test was applicable to detect adulterated pigments and other marine product.

Studies on Photocatalytic Thin Films($TiO_2$, TiO-N) Manufactured by DC Magnetron Sputtering Method and it's Characteristics for Removal of Pollutants (DC 마그네트론 스퍼터링법을 이용한 광촉매박막($TiO_2$, TiO-N)제조 및 오염물질 제거에 관한 연구)

  • Jeong, Weon-Sang;Park, Sang-Weon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.59-66
    • /
    • 2005
  • [ $TiO_2$ ] was deposited by DC magnetron sputtering on glass surface under various sputtering parameters such as discharge power($0.6{\sim}5.2\;kW$, substrate temperature($R.T{\sim}350^{\circ}C$), Ar and $O_2$ flow ratio with $0{\sim}50\;sccm$($Ar+O_2$ 90 sccm) and about 1 mtorr of pressure. TiO-N thin film was prepared under same sputtering conditions for $TiO_2$ thin film except flow ratio($Ar+O_2+N_2$ 90 sccm). The sheet resistance of thin films deposited under these parameters was measured to analyze electronic characteristic and thin film's thickness(${\alpha}$-step), surface roughness(AFM) and formation construction(FE-SEM, XRD) were also measured to draw optimal sputtering parameters. In order to evaluate photo-activity of thin film($TiO_2$, TiO-N) made in optimal parameters for removal of pollutants, toluene among VOCs and Suncion Yellow among reactive dyes were chosen to probe organic compounds for photo-degradation. It was shown that the photo-catalytic thin films had a significant photo-activation for the chosen contaminants and especially TiO-N thin film showed maximum efficiency of 33% for toluene(5 ppm) removal in visible-light range.

Freshness Monitoring of Raw Salmon Filet Using a Colorimetric Sensor that is Sensitive to Volatile Nitrogen Compounds (휘발성 질소화합물 감응형 색변환 센서를 활용한 연어 신선도 모니터링)

  • Kim, Jae Man;Lee, Hyeonji;Hyun, Jung-Ho;Park, Joon-Shik;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.93-99
    • /
    • 2020
  • A colorimetric paper sensor was used to detect volatile nitrogen-containing compounds emitted from spoiled salmon filets to determine their freshness. The sensing mechanism was based on acid-base reactions between acidic pH-indicating dyes and basic volatile ammonia and amines. A sensing layer was simply fabricated by drop-casting a dye solution of bromocresol green (BCG) on a polyvinylidene fluoride substrate, and its color-change response was enhanced by optimizing the amounts of additive chemicals, such as polyethylene glycol, p-toluene sulfonic acid, and graphene oxide in the dye solution. To avoid the adverse effects of water vapor, both faces of the sensing layer were enclosed by using a polyethylene terephthalate film and a gas-permeable microporous polytetrafluoroethylene sheet, respectively. When exposed to basic gas analytes, the paper-like sensor distinctly exhibited a color change from initially yellow, then to green, and finally to blue due to the deprotonation of BCG via the Brønsted acid-base reaction. The use of ammonia analyte as a test gas confirmed that the sensing performance of the optimized sensor was reversible and excellent (detection time of < 15 min, sensitive naked-eye detection at 0.25 ppm, good selectivity to common volatile organic gases, and good stability against thermal stress). Finally, the coloration intensity of the sensor was quantified as a function of the storage time of the salmon filet at 28℃ to evaluate its usefulness in monitoring of the food freshness with the measurement of the total viable count (TVC) of microorganisms in the food. The TVC value increased from 3.2 × 105 to 3.1 × 109 cfu/g in 28 h and then became stable, whereas the sensor response abruptly changed in the first 8 h and slightly increased thereafter. This result suggests that the colorimetric response could be used as an indicator for evaluating the degree of decay of salmon induced by microorganisms.

Supported Metal Nanoparticles: Their Catalytic Applications to Selective Alcohol Oxidation (금속 나노 촉매를 활용한 선택적 알코올 산화 반응)

  • Hussain, Muhammad Asif;Joseph, Nyanzi;Kang, Onyu;Cho, Young-Hun;Um, Byung-Hun;Kim, Jung Won
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.227-238
    • /
    • 2016
  • This review article highlights different types of nano-sized catalysts for the selective alcohol oxidation to form aldehydes (or ketones) with supported or immobilized metal nanoparticles. Metal nanoparticle catalysts are obtained through dispersing metal nanoparticles over a solid support with a large surface area. The nanocatalysts have wide technological applications to industrial and academic fields such as organic synthesis, fuel cells, biodiesel production, oil cracking, energy conversion and storage, medicine, water treatment, solid rocket propellants, chemicals and dyes. One of main reactions for the nanocatalyst is an aerobic oxidation of alcohols to produce important intermediates for various applications. The oxidation of alcohols by supported nanocatalysts including gold, palladium, ruthenium, and vanadium is very economical, green and environmentally benign reaction leading to decrease byproducts and reduce the cost of reagents as opposed to stoichiometric reactions. In addition, the room temperature alcohol oxidation using nanocatalysts is introduced.

Hydrophobic Polydimethylsiloxane Thin Films Prepared by Chemical Vapor Deposition: Application in Water Purification (화학적 증기 증착 방법을 통해 제조한 소수성 폴리디메틸실록산 박막: 수처리로의 응용)

  • Han, Sang Wook;Kim, Kwang-Dae;Kim, Ju Hwan;Uhm, Sunghyun;Kim, Young Dok
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Polydimethylsiloxane (PDMS) can be deposited on various substrates using chemical vapor deposition process, which results in the formation of PDMS thin films with thickness below 5 nm. PDMS layers can be evenly deposited on surfaces of nanoparticles composed of various chemical compositions such as $SiO_2$, $TiO_2$, ZnO, C, Ni, and NiO, and the PDMS-coated surface becomes completely hydrophobic. These hydrophobic layers are highly resistant towards degradation under acidic and basic environments and UV-exposures. Nanoparticles coated with PDMS can be used in various environmental applications: hydrophobic silica nanoparticles can selectively interact with oil from oil/water mixture, suppressing fast diffusion of spill-oil on water and allowing more facile physical separation of spill-oil from the water. Upon heat-treatments of PDMS-coated $TiO_2$ under vacuum conditions, $TiO_2$ surface becomes completely hydrophilic, accompanying formation oxygen vacancies responsible for visible-light absorption. The post-annealed $PDMS-TiO_2$ shows enhanced photocatalytic activity with respect to the bare $TiO_2$ for decomposition of organic dyes in water under visible light illumination. We show that the simple PDMS-coating process presented here can be useful in a variety of field of environmental science and technology.

Electrochemical Treatment of Dye Wastewater Using Fe, RuO2/Ti, PtO2/Ti, IrO2/Ti and Graphite Electrodes (RuO2/Ti, PtO2/Ti, IrO2/Ti 및 흑연전극을 이용한 염료폐수의 전기화학적 처리)

  • Kim, A Ram;Park, Hyun Jung;Won, Yong Sun;Lee, Tae Yoon;Lee, Jae Keun;Lim, Jun Heok
    • Clean Technology
    • /
    • v.22 no.1
    • /
    • pp.16-28
    • /
    • 2016
  • Textile industry is considered as one of the most polluting sectors in terms of effluent composition and volume of discharge. It is well known that the effluents from textile dying industry contain not only chromatic substances but also large amounts of organic compounds and insolubles. The azo dyes generate huge amount of pollutions among many types of pigments. In general, the electrochemical treatments, separating colors and organic materials by oxidation and reduction on electrode surfaces, are regarded as simpler and faster processes for removal of pollutants compared to other wastewater treatments. In this paper the electrochemical degradation characteristics of dye wastewater containing CI Direct Blue 15 were analyzed. The experiments were performed with various anode materials, such as RuO2/Ti, PtO2/Ti, IrO2/Ti and graphite, with stainless steel for cathode. The optimal anode material was located by changing operating conditions like electrolyte concentration, current density, reaction temperature and initial pH. The degradation efficiency of dye wastewater increased in proportion to the electrolyte concentration and the current density for all anode materials, while the temperature effect was dependent on the kind. The performance orders of anode materials were RuO2/Ti > PtO2/Ti > IrO2/Ti > graphite in acid condition and RuO2/Ti > IrO2/Ti > PtO2/Ti > graphite in neutral and basic conditions. As a result, RuO2/Ti demonstrated the best performance as an anode material for the electrochemical treatment of dye wastewater.