• Title/Summary/Keyword: Organic colloid

Search Result 32, Processing Time 0.03 seconds

The Effect of Mercaptoundecanoic Acid (MUA) Coating on Dispersion Property of Au Nanoparticles in Synthesis of Au/TiO2 Core-shell Nanoparticles (Au/TiO2 core-shell 나노입자의 합성에 있어서 Au 나노입자의 분산특성에 미치는 Mercaptoundecanoic acid (MUA)의 피복 효과)

  • Yu, Yeon-Tae;Kim, Byoung-Gyu
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.754-760
    • /
    • 2006
  • Mercaptoundecanoic acid (MUA) has been used to enhance the dispersity of Au nanoparticles in organic solvent and the affinity between the Au nanoparticles surface and titanium dioxide shell in the synthesis of $Au/TiO_2$ core-shell composite nanoparticles. The dispersity of the MUA-coated Au nanoparticles in ethanol aqueous solution with different concentration of $H_2O$ was investigated by UV-Vis. absorption spectrum and the coating amount of MUA was varied from 0.02 mM to 1.0 mM. The MUA-coated Au nanoparticles were highly dispersed in pure $H_2O$ in the wide range of the coating amount of MUA. On the contrary, the MUAcoated Au nanoparticles showed an enhanced stability in the ethanol/$H_2O$=8/2 mixed solution only when the coating amount of MUA was 0.05 mM, and in the ethanol/$H_2O$=7/3 mixed solution when the coating amount of MUA was in the range from 0.02 mM to 0.17 mM. From this systematic study, it can be inferred that the stability and the dispersibility of Au nanoparticles in organic solvents are highly sensitive towards the amount of MUA coating.

A Study on the Livestock Resources regarding on the Discharging Characteristics from Farm Land (농지 주입 시 배출특성에 대한 축분자원화물 연구)

  • Lim, Jai-Myug;Lee, Young-Sin;Han, Gee-Bong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.91-102
    • /
    • 2009
  • In this study, to estimate the transforming (runoff and leachate) rate of the organic fertilizer made of livestock resources to farm land, laboratory scale test was conducted and the results were obtained as follows: The runoff volume from farm land showed the tendency of increase according to the increase of rainfall intensity. The most rainfall leachated into the underground at the rainfall intensity of 20mm/hr, and rainfall of 5L or less leachated at the rainfall intensity of > 32.4 mm/hr. This shows that surface runoff largely depends on the rainfall intensity when soil characteristic and hardness are similar in each site. When liquid compost was fertilized, the surface runoff was similar with the results from the reactor fertilized by compost, and leachate flow was found to be lower than compost. The runoff ratio of contaminant parameters from farm land were BOD 0.00003,, $COD_{cr}$ 0.00006, TN 0.00056, TP 0.00011, TOC 0.00005, Especially, the runoff ratio of TN showed 10 folds higher than other parameters. On the other hand, the runoff ratio of SS showed higher value of 0.001, and colloid particles of soil caused this result rather than the leachate from compost fertilizer. At all ranges of rainfall intensity, fertilizer removal ratio by farm land was found to be 94.9~98.4% for compost and 85.8~98.1% for liquid compost in terms of BOD. For TN, it resulted in 96.6~98.4% for compost and 97.2~98.5% for liquid compost, and thus the most fertilizer from livestock resources were shown to be reduced through farm land application.

Antimicrobial Efficacy of the Disinfectant Solution Nanoxil® Against Fish Pathogenic Bacteria

  • Cha, Chun-Nam;Jung, Won-Chul;Lee, Yeo-Eun;Yoo, Chang-Yeul;Kim, Suk;Lee, Hu-Jang
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.6
    • /
    • pp.496-501
    • /
    • 2010
  • Fish pathogenic bacteria are a considerable danger of farmed fish and a source of economic loss in the fish farming industry. In this study, $Nanoxil^{(R)}$ was compared to hydrogen peroxide and a silver colloid in terms of disinfection efficacy against E. tarda, V. anguillarum and S. iniae. A bactericidal efficacy test conducted by a broth dilution method was used to determine the lowest effective dilution of the disinfectant following exposure to test bacteria for 30 min at $4^{\circ}C$. $Nanoxil^{(R)}$ and test bacteria were diluted with distilled water (DW), hard water (HW) or an organic matter suspension (OM) according to the treatment condition. Under the OM condition, the bactericidal activity of $Nanoxil^{(R)}$ against E. tarda exhibited a lowered efficacy compared to that under the DW and HW conditions. $Nanoxil^{(R)}$ at 500 fold (dilutions on) under all of the conditions demonstrated a high bactericidal efficacy against S. iniae. As $Nanoxil^{(R)}$ possess bactericidal efficacy against fish pathogenic bacteria such as E. tarda, V. anguillarum and S. iniae, this disinfectant solution can be used to limit the spread of fish bacterial diseases.

A Study on Synthesis of Starch-acryl Pressure Sensitive Adhesive by Soap-free Emulsion Polymerization (무유화제 유화중합에 의한 전분-아크릴 점착제의 합성에 관한 연구)

  • Song, Su-Hyun;Kim, Young-Seok;Cho, Ur-Ryong
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • The pressure sensitive adhesives (PSA) were synthesized by soap-free emulsion polymerization of acrylic monomers such as butyl acrylate, 2-ethyl hexyl acrylate, and acrylic acid in the presence of starch as a protective colloid and copolymer. The peel strength and holding power of PSA were increased with starch contents due to the enhancement of gel content, But the initial tackiness of PSA was decreased with starch contents. The contact angle analysis of PSA indicated that the wettability was increased with starch contents owing to the increase of polarity by hydroxy group in starch. In the pH measurement of emulsion with time for biodegradability, the starch in the PSA accelerated the lowering of pH due to the formation of organic acids followed by decomposition of starch.

Solubility Studies of Uranyl Hydrolysis Precipitates (우라닐 가수분해물의 용해도 연구)

  • Park, Yong-Joon;Pyo, Hyung-Ryul;Kim, Won-Ho;Chun, Kwan-Sik
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.9
    • /
    • pp.599-606
    • /
    • 1996
  • The effects of chemical species in groundwater on the solubility of the uranyl hydrolysis precipitates formed at pH 6.4 and 9.7 were investigated. Based on the chemical composition of the groundwater, the synthetic groundwater was prepared. The colloid-free (separated) groundwater was also prepared by removal of both organic and inorganic colloids from the sampled groundwater. Solubilities of precipitates formed in the hydrolysis of uranyl ion in groundwater, separated groundwater, synthetic groundwater and 0.1 M NaCl solution were measured over neutral to alkaline pH range, and especially, the effect of the anions and cations found in groundwater on the solubility was investigated. Solubility in groundwater was approximately two orders of magnitude greater than that in 0.1 M NaCl solution. Soubililties of uranyl hydrolysis precipitates formed at pH 9.7 and 6.4 were compared in groundwater and synthetic groundwater. Solubilities of the precipitates formed at different pH were found to be in the same order of magnitude in groundwater and synthetic groundwater, however the uranyl hydolysis precipitates formed at higher pH values showed a tendency of higher solubility.

  • PDF

Effect of citrate coated silver nanoparticles on biofilm degradation in drinking water PVC pipelines

  • Nookala, Supraja;Tollamadugu, Naga Venkata Krishna Vara Prasad;Thimmavajjula, Giridhara Krishna;Ernest, David
    • Advances in nano research
    • /
    • v.3 no.2
    • /
    • pp.97-109
    • /
    • 2015
  • Citrate ion is a commonly used reductant in metal colloid synthesis, undergoes strong surface interaction with silver nanocrystallites. The slow crystal growth observed as a result of the interaction between the silver surface and the citrate ion makes this reduction process unique compared to other chemical and radiolytic synthetic methods. The antimicrobial effects of silver (Ag) ion or salts are well known, but the effects of citrate coated Ag nanoparticles (CAgNPs) are scant. Herein, we have isolated biofilm causative bacteria and fungi from drinking water PVC pipe lines. Stable CAgNPs were prepared and the formation of CAgNPs was confirmed by UV-visible spectroscopic analysis and recorded the localized surface plasmon resonance of CAgNPs at 430 nm. Fourier transform infrared spectroscopic analysis revealed C=O and O-H bending vibrations due to organic capping of silver responsible for the reduction and stabilization of the CAgNPs. X-ray diffraction micrograph indicated the face centered cubic structure of the formed CAgNPs, and morphological studies including size (average size 50 nm) were carried out using transmission electron microscopy. The hydrodynamic diameter (60.7 nm) and zeta potential (-27.6 mV) were measured using the dynamic light scattering technique. The antimicrobial activity of CAgNPs was evaluated (in vitro) against the isolated fungi, Gram-negative and Gram-positive bacteria using disc diffusion method and results revealed that CAgNPs with 170ppm concentration are having significant antimicrobial effects against an array of microbes tested.

Tc-99m Labeling of Dione Bisoxime Compounds (Dione Bisoxime 계통의 화합물에 대한 테크네슘표지 원리에 관한 연구)

  • Jeong, Jae-Min;Cho, Jung-Hyuk;Oh, Seung-Joon;Lee, Myung-Chul;Chung, Soo-Wook;Chung, June-Key;Lee, Dong-Soo;Kwark, Cheol-Eun;Lee, Kyung-Han;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.1
    • /
    • pp.110-117
    • /
    • 1995
  • Tc-99m Labeled hexamethylenepropyleneamineoxime ([$^{99m}Tc$]-HMPAO) is a famous amino-oxime compound and is widely used to construct SPECT images of cerebral blood flow. To investigate the relationship between chemical structure and radiolabeling in these kind of diamine-oxime compounds, we synthesized seven compounds by Schiff's base formation and successive reduction with sodium borohydride. They were (RR/SS )-4,8-diaza-3,6,6,9-tetramethylundecane-2,10-dione bisoxime (2), (RR/SS/meso)-4,8-diaza-3,9-dimethy-lundecane-2,10-dione bisoxime (4), (RR/SS/meso)-4,8-diaza-3,10-dimethyldodecane-2,11-dione bisoxime (5), (RR/SS/meso)-4,7-diaza-3,6,6,8-tetramethyldecane-2,9-dione bisoxime (8), (RR/SS/meso)-4,7-diaza-5,6-cyclohexyl-3,8-dimethyldecane-2,9-dione bisoxime (10), (RR/SS/meso)-3,4-bis(1-aza-2-methyl-3-oxime-1-butyl)-benzoic acid (12), and (RR/SS/ meso)-2,3-bis(1-aza-2-methyl-3-oxime-1-butyl) benzophenone (14). Chemical structures of all the synthesized compounds were identified by taking $^1H$ spectrum. Among them, 2 and 4 are propyleneamine oxime (PnAO), 6 is butyleneamine oxime (BnAO) and 8, 10, 12 and 14 are ethyleneamine oxime (EnAO). Each compound (0.5 mg) was incubated with stannous chloride (0.5 g - 8 g), carbonate-bicarbonate buffer (final concentration = 0.1 M, pH 7 - pH 10) and Tc-99m-pertechenate (1 ml). Tc-99m labeling of these compounds were checked by ITLC (acetone), ITLC (normal saline), reverse phase TLC (50 % acetonitrile) and ITLC (ethyl acetate). According to the results, EnAO's were not labeled by Tc-99m in any of above condition. About 11 % of maximum labeling efficiency was obtained with BnAO. However, 4 (PnAO) was labeled with Tc-99m to 85 % which is similar to the labeling efficiency of 2 (HMPAO). Hydrophilic impurity (9 % ) was the most significant problem with the labeling of 4, however, pertechnetate (3 % ) and colloid (3 %) were minor problem. In conclusion, we synthesized seven diamine blsoxlme compounds. Among them, four EnAO compounds were not labeled by Tc-99m. A BnAO was labeled poorly and two PnAO's were labeled well. These labeling can be explained by tertiary structure of their Tc-99m chelate.

  • PDF

Properties of the Variation of Fe and Mn in the Vicinity of Soil Affected by Forest Fire for the Development of Technics that Reduces Forest Fire-induced 2nd Damage from Gangwon Provinces, Korea (2차산불피해저감기술개발을 위한 강원도 산불지토양 중 Fe-Mn원소의 분포특성)

  • 오근창;양동윤;김주영;남욱현;윤정한
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.285-297
    • /
    • 2002
  • This study was carried out to prove the factor properties of the soil affected by a forest fire through the physical and chemical analysis and the data from the conclusion of those analysis are applied to the development of technics that reduces a forest fire-induced 2nd damage. The forest fire was in December 2000 at Gangreung city and Donghae city, Gangwon provinces, Korea. Soil samples were collected at upper layers (0-5 cm) and bottom layers (5-40 cm) in November 2001 from the burned and control sites. Values of pH in burned soils of the upper layers affected by forest fire are higher than those in control soils. Both the fragments of fire-burned plant and differences of geological properties are resulted in a class of soil. Contents of organic matters in burned soils are higher than those in control soils, exceptionally the contents of organic matters in burned soils that contain coaly shale are lower than those in control soils. Weathering indices in burned soils are higher than those in control soils and it concerned with loss of soil. Iron ions Fe(Fe$^{2+}$ or Fe$^{3+}$) are easily extracted from the burned soils by rainfall, but Mn ions are straightly exist in the burned soils by physiochemical adsorption of colloid. Through the sequential extraction in the burned soils and control soils, we are certificate the extraction of Fe ions and the disturbance of Mn ions from the burned soils. As a consequence of factor analysis in burned soil and control soil, we are certificate that the influence of forest fire results in a disturbance of positive correlation factors.

Synthesis of Sludge Waste-derived Semiconductor Grade Uniform Colloidal Silica Nanoparticles and Their CMP Application (슬러지 폐기물을 활용한 반도체급 균일한 콜로이달 실리카 나노입자의 제조 및 CMP 응용)

  • Kim, Dong Hyun;Kim, Jiwon;Jekal, Suk;Kim, Min Jeong;Kim, Ha-Yeong;Kim, Min Sang;Kim, Sang-Chun;Park, Seon-Young;Yoon, Chang-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.3
    • /
    • pp.5-12
    • /
    • 2022
  • This study suggests the effective recycling method of sludge waste from various industrial fields to synthesize uniform colloidal silica nanoparticles. In detail, polymers are removed from the sludge waste to attain sludge-extracted silica (s-SiO2) micron-sized particles, and ammonia assisted sonication is applied to s-SiO2, which has effectively extracted the silanol precursor. The nano-sized silica (n-SiO2) particles are successfully synthesized by a typical sol-gel method using silanol precursor. Also, the yield amounts of n-SiO2 are determined by the function of s-SiO2 etching time. Finally, n-SiO2-based slurry is synthesized for the practical CMP application. As a result, rough-surfaced semiconductor chip is successfully polished by the n-SiO2-based slurry to exhibit the mirror-like clean surface. In this regard, sludge wastes are successfully prepared as valuable semicondutor grade materials.

Sorption of Arsenite Using Nanosized Mackinawite (FeS)-Coated Silica Sand (나노 크기 매킨나와이트로 코팅된 규사를 이용한 아비산염의 흡착)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.185-195
    • /
    • 2012
  • Due to the high reduction and sorption capacity as well as the large specific surface area, nanosized mackinawite (FeS) is useful in reductively transforming chlorinated organic pollutants and sequestering toxic metals and metalloids. Due to the dynamic nature in its colloid stability, however, nanosized FeS may be washed out with the groundwater flow or result in aquifer clogging via particle aggregation. Thus, these nanoparticles should be modified such as to be built into permeable reactive barriers. This study employed coating methods in efforts to facilitate the installation of permeable reactive barriers of nanosized mackinawite. In applying the methods, nanosized mackinawite was coated on non-treated silica sand (NTS) and chemically treated silica sand (CTS). For both silica sands, the maximum coating of mackinawite occurred around pH 5.4, the condition of which was governed by (1) the solubility of mackinawite and (2) the surface charge of both silica and mackinawite. Under this pH condition, the maximum coating by NTS and CTS were found to be 0.101 mmol FeS/g and 0.043 mmol FeS/g respectively, with such elevated coatings by NTS likely linked with impurities (e.g., iron oxides) on its surface. Arsenite sorption experiments were performed under anoxic conditions using uncoated silica sands and those coated with mackinawite at the optimal pH to compare their reactivity. At pH 7, the relative sorption efficiency between uncoated NTS and coated NTS changed with the initial concentration of arsenite. At the lower initial concentration, uncoated NTS showed the higher sorption efficiency, whereas at the higher concentration, coated NTS exhibited the higher sorption efficiency. This could be attributed to different sorption mechanisms as a function of arsenite concentration: the surface complexation of arsenite with the iron oxide impurity on silica sand at the low concentration and the precipitation as arsenic sulfides by reaction with mackinawite coating at the high concentration. Compared to coated NTS, coated CTS showed the lower arsenite removal at pH 7 due to its relatively lower mackinawite coating. Taken together, our results indicate that NTS is a more effective material than CTS for the coating of nanosized mackinawite.