• Title/Summary/Keyword: Organic carbon

Search Result 3,014, Processing Time 0.026 seconds

Characteristics and classification of paddy soils on the Gimje-Mangyeong plains (김제만경평야(金堤萬頃平野)의 답토양특성(沓土壤特性)과 그 분류(分類)에 관(關)한 연구(硏究))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.2
    • /
    • pp.1-38
    • /
    • 1972
  • This study, designed to establish a classification system of paddy soils and suitability groups on productivity and management of paddy land based on soil characteristics, has been made for the paddy soils on the Gimje-Mangyeong plains. The morphological, physical and chemical properties of the 15 paddy soil series found on these plains are briefly as follows: Ten soil series (Baeggu, Bongnam, Buyong, Gimje, Gongdeog, Honam, Jeonbug, Jisan, Mangyeong and Suam) have a B horizon (cambic B), two soil series (Geugrag and Hwadong) have a Bt horizon (argillic B), and three soil series (Gwanghwal, Hwagye and Sindab) have no B or Bt horizons. Uniquely, both the Bongnam and Gongdeog series contain a muck layer in the lower part of subsoil. Four soil series (Baeggu, Gongdeog, Gwanghwal and Sindab) generally are bluish gray and dark gray, and eight soil series (Bongnam, Buyong, Gimje, Honam, Jeonbug, Jisan, Mangyeong and Suam) are either gray or grayish brown. Three soil series (Geugrag, Hwadong and Hwagye), however, are partially gleyed in the surface and subsurface, but have a yellowish brown to brown subsoil or substrata. Seven soil series (Bongnam, Buyong, Geugrag, Gimje, Gongdeog, Honam and Hwadong) are of fine clayey texture, three soil series (Baeggu, Jeonbug and Jisan) belong to fine loamy and fine silty, three soil series (Gwanghwal, Mangyeong and Suam) to coarse loamy and coarse silty, and two soil series (Hwagye and Sindab) to sandy and sandy skeletal texture classes. The carbon content of the surface soil ranges from 0.29 to 2.18 percent, mostly 1.0 to 2.0 percent. The total nitrogen content of the surface soil ranges from 0.03 to 0.25 percent, showing a tendency to decrease irregularly with depth. The C/N ratio in the surface soil ranges from 4.6 to 15.5, dominantly from 8 to 10. The C/N ratio in the subsoil and substrata, however, has a wide range from 3.0 to 20.25. The soil reaction ranges from 4.5 to 8.0. All soil series except the Gwanghwal and Mangyeong series belong to the acid reaction class. The cation exchange cpacity in the surface soil ranges from 5 to 13 milliequivalents per 100 grams of soil, and in all the subsoil and substrata except those of a sandy texture, from 10 to 20 milliequivalents per 100 grams of soil. The base saturation of the soil series except Baeggu and Gongdeog is more than 60 percent. The active iron content of the surface soil ranges from 0.45 to 1.81 ppm, easily-reduceable manganese from 15 to 148 ppm, and available silica from 36 to 366 ppm. The iron and manganese are generally accumulated in a similar position (10 to 70cm. depth), and silica occurs in the same horizon with that of iron and manganese, or in the deeper horizons in the soil profile. The properties of each soil series extending from the sea shore towards the continental plains change with distance and they are related with distance (x) as follows: y(surface soil, clay content) = $$-0.2491x^2+6.0388x-1.1251$$ y(subsoil or subsurface soil, clay content) = $$-0.31646x^2+7.84818x-2.50008$$ y(surface soil, organic carbon content) = $$-0.0089x^2+0.2192x+0.1366$$ y(subsoil or subsurface soil, pH) = $$-0.0178x^2-0.04534x+8.3531$$ Soil profile development, soil color, depositional and organic layers, soil texture and soil reaction etc. are thought to be the major items that should be considered in a paddy soil classification. It was found that most of the soils belonging to the moderately well, somewhat poorly and poorly drained fine and medium textured soils and moderately deep fine textured soils over coarse materials, produce higher paddy yields in excess of 3,750 kg/ha. and most of the soils belonging to the coarse textured soils, well drained fine textured soils, moderately deep medium textured soils over coarse materials and saline soils, produce yields less than 3,750kg/ha. Soil texture of the profile, available soil depth, salinity and gleying of the surface and subsurface soils etc. seem to be the major factors determining rice yields, and these factors are considered when establishing suitability groups for paddy land. The great group, group, subgroup, family and series are proposed for the classification categories of paddy soils. The soil series is the basic category of the classification. The argillic horizon (Bt horizon) and cambic horizon (B horizon) are proposed as two diagnostic horizons of great group level for the determination of the morphological properties of soils in the classification. The specific soil characteristics considered in the group and subgroup levels are soil color of the profile (bluish gray, gray or yellowish brown), salinity (salic), depositonal (fluvic) and muck layers (mucky), and gleying of surface and subsurface soils (gleyic). The family levels are classified on the basis of soil reaction, soil texture and gravel content of the profile. The definitions are given on each classification category, diagnostic horizons and specific soil characteristics respectively. The soils on these plains are classified in eight subgroups and examined under the existing classification system. Further, the suitability group, can be divided into two major categories, suitability class and subclass. The soils within a suitability class are similar in potential productivity and limitation on use and management. Class 1 through 4 are distinguished from each other by combination of soil characteristics. Subclasses are divided from classes that have the same kind of dominant limitations such as slope(e), wettness(w), sandy(s), gravels(g), salinity(t) and non-gleying of the surface and subsurface soils(n). The above suitability classes and subclasses are examined, and the definitions are given. Seven subclasses are found on these plains for paddy soils. The classification and suitability group of 15 paddy soil series on the Gimje-Mangyeong plains may now be tabulated as follows.

  • PDF

Evaluation of CH4 Flux for Continuous Observation from Intertidal Flat Sediments in the Eoeun-ri, Taean-gun on the Mid-western Coast of Korea (서해안 태안 어은리 갯벌의 연속관측 메탄(CH4) 플럭스 특성 평가)

  • Lee, Jun-Ho;Rho, Kyoung Chan;Woo, Han Jun;Kang, Jeongwon;Jeong, Kap-Sik;Jang, Seok
    • Economic and Environmental Geology
    • /
    • v.48 no.2
    • /
    • pp.147-160
    • /
    • 2015
  • In 2014, on 31 August and 1 September, the emissions of $CH_4$, $CO_2$, and $O_2$ gases were measured six times using the closed chamber method from exposed tidal flat sediments in the same position relative to the low point of the tidal cycle in the Eoeun-ri, Taean-gun, on the Mid-western Coast of Korea. The concentrations of $CH_4$ in the air sample collected in the chamber were measured using gas chromatography with an EG analyzer, model GS-23, within 6 hours of collection, and the other gases were measured in real time using a multi-gas monitor. The gas emission fluxes (source (+), and sink (-)) were calculated from a simple linear regression analysis of the changes in the concentrations over time. In order to see the surrounding parameters (water content, temperature, total organic carbon, average mean size of sediments, and the temperature of the inner chamber) were measured at the study site. On the first day, across three measurements during 5 hours 20 minutes, the observed $CO_2$ flux absorption was -137.00 to $-81.73mg/m^2/hr$, and the $O_2$ absorption, measured simultaneously, was -0.03 to $0.00mg/m^2/hr$. On the second day using an identical number of measurements, the $CO_2$ absorption was -20.43 to $-2.11mg/m^2/hr$, and the $O_2$ absorption -0.18 to $-0.14mg/m^2/hr$. The $CH_4$ absorption before low tide was $-0.02mg/m^2/hr$ (first day, Pearson correlation coefficient using the SPSS statistical analysis is -0.555(n=5, p=0.332, pronounced negative linear relationship)), and $-0.15mg/m^2/hr$ (second day, -0.915(n=5, p=0.030, strong negative linear relationship)) on both measurement days. The emitted flux after low tide on both measurement days reached a minimum of $+0.00mg/m^2/hr$ (+0.713(n=5, p=0.176, linear relationship which can be almost ignored)), and a maximum of $+0.03mg/m^2/hr$ (+0.194(n=5, p=0.754, weak positive linear relationship)) after low tide. However, the absolute values of the $CH_4$ fluxes were analyzed at different times. These results suggest that rate for $CH_4$ fluxes, even the same time and area, were influenced by changes in the tidal cycle characteristics of surface sediments for understanding their correlation with these gas emissions, and surrounding parameters such as physiochemical sediments conditions.

Taxonomical Classification and Genesis of Jeju Series in Jeju Island (제주도 토양인 제주통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol;Lee, Shin-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.230-236
    • /
    • 2010
  • Jeju Island is a volanic island which is located about 96 km south of Korean Peninsula. Volcanic ejecta, and volcaniclastic materials are widespread as soil parent materials throughout the island. Soils on the island have the characteristics of typical volcanic ash soils. This study was conducted to reclassify Jeju series based on the second edition of Soil Taxonomy and to discuss the formation of Jeju series in Jeju Island. Morphological properties of typifying pedon of Jeju series were investigated, and physico-chemical properties were analyzed according to Soil survey laboratory methods manual. The typifying pedon has dark brown (10YR 3/3) silt clay loam A horizon (0~22 cm), strong brown (7.5YR 4/6) silty clay BAt horizon (22~43 cm), brown (7.5YR 4/4) silty clay Bt1 horizon (43~80 cm), brown (7.5YR 4/6) silty clay loamBt2 horizon (80~105 cm), and brown (10YR 5/4) silty clay loam Bt3 horizon (105~150 cm). It is developed in elevated lava plain, and are derived from basalt, and pyroclastic materials. The typifying pedon contains 1.3~2.1% oxalate extractable (Al + 1/2 Fe), less than 85%phosphate retention, and higher bulk density than 0.90 Mg $m^{-3}$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 22 to 150 cm, and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol, not as Andisol. Its has 0.9% or more organic carbon in the upper 15 cm of the argillic horizon, and can be classified as Humult. It dose not have fragipan, kandic horizon, sombric horizon, plinthite, etc. in the given depths, and key out as Haplohumult. A hoizon (0~22 cm) has a fine-earth fraction with both a bulk density of 1.0 Mg $cm^{-3}$ or less, and Al plus 1/2 Fe percentages (by ammonium oxalate) totaling more than 1.0. Thus, it keys out as Andic Haplohumult. It has 35% or more clay at the particle-size control section, and has thermic soil temperature regime. Jeju series can be classified as fine, mixed, themic family of Andic Haplohumults, not as ashy, thermic family of Typic Hapludands. In the western, and northern coastal areas which have a relatively dry climate in Jeju Island, non Andisols are widely distributed. Mean annual precipitation increase 110 mm, and mean annual temperature decrease $0.8^{\circ}C$ with increasing elevation of 100m. In the western, and northern mid-mountaineous areas Andisols, and non Andisols are distributed simultaneously. Jeju series distributed mainly in the western and northern mid-mountaineous areas are developed as Ultisols with Andic subgroup.

Difference in Chemical Composition of PM2.5 and Investigation of its Causing Factors between 2013 and 2015 in Air Pollution Intensive Monitoring Stations (대기오염집중측정소별 2013~2015년 사이의 PM2.5 화학적 특성 차이 및 유발인자 조사)

  • Yu, Geun Hye;Park, Seung Shik;Ghim, Young Sung;Shin, Hye Jung;Lim, Cheol Soo;Ban, Soo Jin;Yu, Jeong Ah;Kang, Hyun Jung;Seo, Young Kyo;Kang, Kyeong Sik;Jo, Mi Ra;Jung, Sun A;Lee, Min Hee;Hwang, Tae Kyung;Kang, Byung Chul;Kim, Hyo Sun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.16-37
    • /
    • 2018
  • In this study, difference in chemical composition of $PM_{2.5}$ observed between the year 2013 and 2015 at six air quality intensive monitoring stations (Bangryenogdo (BR), Seoul (SL), Daejeon (DJ), Gwangju (GJ), Ulsan (US), and Jeju (JJ)) was investigated and the possible factors causing their difference were also discussed. $PM_{2.5}$, organic and elemental carbon (OC and EC), and water-soluble ionic species concentrations were observed on a hourly basis in the six stations. The difference in chemical composition by regions was examined based on emissions of gaseous criteria pollutants (CO, $SO_2$, and $NO_2$), meteorological parameters (wind speed, temperature, and relative humidity), and origins and transport pathways of air masses. For the years 2013 and 2014, annual average $PM_{2.5}$ was in the order of SL ($${\sim_=}DJ$$)>GJ>BR>US>JJ, but the highest concentration in 2015 was found at DJ, following by GJ ($${\sim_=}SJ$$)>BR>US>JJ. Similar patterns were found in $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$. Lower $PM_{2.5}$ at SL than at DJ and GJ was resulted from low concentrations of secondary ionic species. Annual average concentrations of OC and EC by regions had no big difference among the years, but their patterns were distinct from the $PM_{2.5}$, $SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$ concentrations by regions. 4-day air mass backward trajectory calculations indicated that in the event of daily average $PM_{2.5}$ exceeding the monthly average values, >70% of the air masses reaching the all stations were coming from northeastern Chinese polluted regions, indicating the long-range transportation (LTP) was an important contributor to $PM_{2.5}$ and its chemical composition at the stations. Lower concentrations of secondary ionic species and $PM_{2.5}$ at SL in 2015 than those at DJ and GJ sites were due to the decrease in impact by LTP from polluted Chinese regions, rather than the difference in local emissions of criteria gas pollutants ($SO_2$, $NO_2$, and $NH_3$) among the SL, DJ, and GJ sites. The difference in annual average $SO{_4}^{2-}$ by regions was resulted from combination of the difference in local $SO_2$ emissions and chemical conversion of $SO_2$ to $SO{_4}^{2-}$, and LTP from China. However, the $SO{_4}^{2-}$ at the sites were more influenced by LTP than the formation by chemical transformation of locally emitted $SO_2$. The $NO_3{^-}$ increase was closely associated with the increase in local emissions of nitrogen oxides at four urban sites except for the BR and JJ, as well as the LTP with a small contribution. Among the meterological parameters (wind speed, temperature, and relative humidity), the ambient temperature was most important factor to control the variation of $PM_{2.5}$ and its major chemical components concentrations. In other words, as the average temperature increases, the $PM_{2.5}$, OC, EC, and $NO_3{^-}$ concentrations showed a decreasing tendency, especially with a prominent feature in $NO_3{^-}$. Results from a case study that examined the $PM_{2.5}$ and its major chemical data observed between February 19 and March 2, 2014 at the all stations suggest that ambient $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations are not necessarily proportional to the concentrations of their precursor emissions because the rates at which they form and their gas/particle partitioning may be controlled by factors (e.g., long range transportation) other than the concentration of the precursor gases.