• Title/Summary/Keyword: Organic biradical

Search Result 3, Processing Time 0.018 seconds

The Link Between Stereoselectivity and Spin Selectivity in Intermolecular and Intramolecular Photochemical Reactions

  • Griesbeck, Axel G.
    • Journal of Photoscience
    • /
    • v.10 no.1
    • /
    • pp.49-60
    • /
    • 2003
  • How stereo selectivity in singlet and triplet photocycloaddition and photocyclization reactions, respectively, is linked to spin selectivity and how this link affects our understanding of photochemical reaction mechanisms, is described in this review. As illustrative examples, the Paterno-Buchi reaction and the Norrish-Yang cyclization are described with emphasis on triplet biradical structure and dynamics.

  • PDF

EXPLORATORY PHOTOCHEMICAL STUDY ON THE o-NITROBENZYLSULFONYL DERIVATIVES

  • Chang, Sun-Ki
    • Journal of Photoscience
    • /
    • v.1 no.1
    • /
    • pp.67-68
    • /
    • 1994
  • INTRODUCTION : The photochemistry of nitro chromophore has been the subject of intense study only in recent years. Unlike the carbonyl functional group, of which the photochemistry has been quite extensively studied and fairly well understood, as a result of excellent work done by numerous physical and organic photochemists alike, the nature of photochemistry of nitro group has only recently been systematically explored. The photochemistry of nitro group exhibits general features of the photochemistry of the carbonyl groups such as hydrogen abstraction by the diradical species generated from the n-$\pi$$^*$ excited state of the nitro group. Other photochemical pathways common to the carbonyl group such as the biradical intermidiate formation, photocycloelimination, and cydoaddition reactions are also open for the nitro group. Of all the photochemical reactions of the nitro group mentioned above, hydrogen abstraction by the n-$\pi$$^*$ excited state of the nitro group has drawn much attention by synthetic organic chemists and polymer chemists. In the field of organic synthesis, above mintioned photochemical reaction has been utilized in the photoprotection-deprotection chemistry.

  • PDF