• 제목/요약/키워드: Organic battery

검색결과 127건 처리시간 0.021초

Ru를 첨가한 음극활물질 Li4Ti5O12의 전기화학적 특성 (Electrochemical Characteristics of Ru Added Li4Ti5O12 as an Anode Material)

  • 조우람;나병기
    • 청정기술
    • /
    • 제20권4호
    • /
    • pp.433-438
    • /
    • 2014
  • 전기자동차와 하이브리드 전기자동차에 요구되는 높은 충 방전 속도, 안전성, 대형화에 적합한 충 방전 전지의 개발은 많은 관심을 받고 있다. 스피넬 구조의 $Li_4Ti_5O_{12}$는 리튬이온이차전지의 음극활물질로 충 방전 시 부피변화가 거의 없기 때문에 수명특성이 뛰어나고, 전해액이 분해되는 전위보다 높은 작동 전압을 갖기 때문에 안정한 장점이 있다. 본 실험에서는 $Li_4Ti_5O_{12}$의 단점인 전기전도성을 향상시키고자 소량의 Ru를 첨가하여 $Li_4Ti_5O_{12}$를 고상법으로 제조하여 테스트하였다. TGA-DTA, XRD, SEM, 충 방전 테스트를 통해 분석을 실시하였다. Ru를 첨가하였을 때 용량은 약간 감소하였지만, 분극현상이 감소하는 것을 확인하였다. 그리고 Ru를 3%와 4% 첨가하였을 때 높은 전류밀도인 10 C-rate 충 방전에서 용량감소율이 줄었다.

이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술 (High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent)

  • 센디팍;양희열;홍세철
    • 자원리싸이클링
    • /
    • 제32권1호
    • /
    • pp.21-32
    • /
    • 2023
  • 리튬이온 배터리(LIB) 제조를 위한 리튬의 사용이 점차 증가함에 따라 그에 따라 발생되는 리튬이온배터리 폐기가 증가될 것으로 사료된다. 이에 따라 폐배터리를 재활용을 하기위한 용매 추출을 통한 재활용에 대한 활발한 연구가 니켈, 코발트 및 망간과 같은 유가금속을 제거한 후 얻은 폐 용액에서 리튬의 회수가 중요하다. 본 연구에서는 폐이차전지 재활용공정 후 발생되는 폐액에서 리튬을 회수하기위해 추출제 Di-(2-ethylhexyl) hosphoricacid(D2EHPA)와 등유의 개질제 Tri-n-butyphosphate(TBP)를 선택적으로 혼합하여 추출조건을 최적화하였다. 폐액에는 리튬과 고농도의 나트륨(Li+ = 0.5% ~ 1%, Na+ = 3 ~ 6.5%)을 함유하고 있었으며, 리튬의 추출은 유기용매의 다른 구성에서 최종적으로 20% D2EHPA + 20% TBP + 60% 등유로 구성된 유기용매에서 효과적인 추출을 조건을 확립하였다. NaOH의 비누화를 이용한 SX 시스템에서는 평형 pH 4~4.5에서 유기 대 수성(O/A)이 5일 때 약 95% 이상의 리튬이 선택적으로 추출되는 것을 확인하였다. 적은 양의 나트륨으로 염화리튬에서 탄산리튬 분말을 얻기 위해 고순도 중탄산암모늄을 처리하였다. 최종적으로 처리된 탄산리튬에 여러번 세수를 통하여 미량의 나트륨을 제거하고 고순도 탄산리튬 분말(순도 99.2%)을 제조하였다. 따라서 본 연구를 통하여 폐이차전지 재활용공정에서 발생되는 폐액을 활용하여 탄산리튬의 효율적인 제조방법을 확인하였다.

직접메탄올 연료전지의 장기운전 특성 분석 및 성능향상 연구 (Analysis of Long-term Stability of Direct Methanol Fuel Cell and Investigation of the Methods to Improve its Performance)

  • 이현숙;배병찬;이재영;임태훈;하흥용
    • 한국수소및신에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.31-39
    • /
    • 2005
  • Direct methanol fuel cell (DMFC) is considered as a candidate for portable power sources, that could overcome the disadvantages of lithium battery. But in order to attain commercial viability the long term stability of the DMFC should be achieved. Understanding the long-term behavior of membrane-electrode assembly (MEA) is a prerequisite to this purpose and the optimization of the MEA is also needed. In this study we have investigated the changes in performance and electrochemical properties of the MEA during extended operation and the effects of heat treatment of MEA on the long-term performance. The MEAs have been treated in an autoclave with saturated water vapor at 120$^{\circ}C$, vacuum oven at 140$^{\circ}C$ and boiling in organic solvents. The autoclaved MEA was found to be have the best long term performance. The on-off operation mode also increased the performance probably due to effective removal of products from the electrodes. Physical and electrochemical analyses using a scanning electron microscope, impedance analyser and half-cell technique have been done to characterize the MEAs.

CNT를 첨가한 Silicon/Carbon 음극소재의 전기화학적 특성 (Electrochemical Characteristics of Silicon/Carbon Composites with CNT for Anode Material)

  • 정민지;박지용;이종대
    • Korean Chemical Engineering Research
    • /
    • 제54권1호
    • /
    • pp.16-21
    • /
    • 2016
  • 실리콘의 부피팽창과 낮은 전기전도도를 개선하기 위하여 Silicon/Carbon/CNT 복합체를 제조하였다. Silicon/Carbon/CNT 합성물은 SBA-15를 합성한 후, 마그네슘 열 환원 반응으로 Silicon/MgO를 제조하여 Phenolic resin과 CNT를 첨가하여 탄화하는 과정을 통해 합성하였다. 제조된 Silicon/Carbon/CNT 합성물은 XRD, SEM, BET, EDS를 통해 특성을 분석하였다. 본 연구에서는 충방전, 사이클, 순환전압전류, 임피던스 테스트를 통해 CNT 첨가량에 따른 전기화학적 효과를 조사하였다. $LiPF_6$ (EC:DMC:EMC=1 :1 :1 vol%) 전해액에서 Silicon/Carbon/CNT 음극활물질을 사용하여 제조한 코인셀은 CNT 함량이 7 wt% 일 때 1,718 mAh/g으로 높은 용량을 나타내었다. 코인셀의 사이클 성능은 CNT 첨가량이 증가할수록 개선되었다. 11 wt%의 CNT를 첨가한 Silicon/Carbon/CNT 음극은 두 번째 사이클 이후 83%의 높은 용량 보존율을 나타냄을 알 수 있었다.

인산 처리된 표면 개질 음극 석탄계 피치의 전기화학적 특성 (Electrochemical Characteristics of Surface Modified CTP Anode by H3PO4 Treatment)

  • 이호용;이종대
    • 공업화학
    • /
    • 제27권4호
    • /
    • pp.415-420
    • /
    • 2016
  • 음극소재의 전기화학적 성능을 향상시키기 위해, 인산의 화학처리를 통한 헤테로 원자를 도입함으로써 석탄계 피치의 표면 개질을 수행하였다. 제조된 표면 개질 피치 음극소재의 물리적 특성은 XRD, FE-SEM, XPS 분석을 통하여 수행되었으며, 전기화학적 특성은 $LiPF_6$ (EC : DMC = 1 : 1 vol% + VC 3 wt%) 전해액을 사용하여 충 방전 테스트, 율속 테스트, 순환 전압 전류 테스트와 임피던스 테스트를 통해 조사하였다. 인산 3 wt% 첨가된 표면 개질 피치 전지의 초기 충전 용량 및 초기효율은 489 mAh/g, 82%로 다른 조성의 음극소재보다 우수하였다. 또한 3 wt% 인산으로 표면개질된 CTP 음극소재의 용량 보존율은 30사이클 후에 86%를 나타냈으며, 2 C/0.1 C에서 87%의 우수한 율속 특성을 보여줌을 알 수 있었다.

Trifluoropropyltrimethoxysilane 전해질 첨가제를 이용한 리튬이온전지의 싸이클 특성 향상 (Trifluoropropyltrimethoxysilane as an Electrolyte Additive to Enhance the Cycling Performances of Lithium-Ion Cells)

  • 신원경;박세미;김동원
    • 전기화학회지
    • /
    • 제17권3호
    • /
    • pp.156-163
    • /
    • 2014
  • 본 연구에서는 불소계 실란을 첨가제로 사용하여 전해액의 열화 반응을 억제함으로써 리튬이온전지의 싸이클 특성을 향상시키고자 하였다. 첨가제로 사용된 trifluoropropyltrimethoxysilane은 리튬염과 카보네이트계 유기 용매로 이루어진 액체 전해질보다 전기화학적 산화, 환원 분해반응이 먼저 일어나 음극 및 양극 표면에서 안정적인 고체전해질계면 (solid electrolyte interphase, SEI) 막을 형성하며, 5 wt.%의 첨가제를 포함하는 경우 가장 우수한 전기화학적 특성을 나타내었다. SEM 및 XPS 분석을 통해 전극 표면에 생성된 피막의 화학 성분을 분석하였으며, 이들 결과로부터 새로운 SEI 형성 첨가제로서 불소계 실란의 가능성을 확인하였다.

구연산염법을 이용한 LiFePO4 합성 및 전기화학특성에 관한 연구 (Synthesis and Electrochemical Properties of LiFePO4 by Citrate Process)

  • 김수민;김상훈;김진호;김응수;황해진;조우석
    • 한국수소및신에너지학회논문집
    • /
    • 제22권5호
    • /
    • pp.728-734
    • /
    • 2011
  • $LiFePO_4$ is a promising cathode material for secondary lithium batteries due to its high energy density, low cost and safety. $LiFePO_4$ was synthesized by the citrate process under reductive, neutral, and oxidative, atmospheres and the crystal structure was analyzed by X-ray powder diffraction. The samples synthesized under $N_2$ and $H_2$ atmosphere showed a single phase of a olivine structure, where the samples synthesized under $O_2$ atmosphere exhibited second phase of $Fe2O_3$. All the samples synthesized at 400, 600 and $800^{\circ}C$ under $N_2$ atmosphere presented a single phase of olivine. Residual organic material was observed for the sample synthesized at $400^{\circ}C$. There was nearly no intensity difference between the samples synthesized at $600^{\circ}C$ and $800^{\circ}C$. The electrochemical characteristic of the $LiFePO_4$ synthesized at $600^{\circ}C$ in the $N_2$ atmosphere was analyzed. The result exhibited an high discharge capacity of 160 mAh/g at the first cycle, and 155-160 mAh/g after 45 cycles.

Thermal Behavior of LixCoO2 Cathode and Disruption of Solid Electrolyte Interphase Film

  • Doh, Chil-Hoon;Kim, Dong-Hun;Lee, Jung-Hun;Lee, Duck-Jun;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Gi;Veluchamy, Angathevar
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권4호
    • /
    • pp.783-786
    • /
    • 2009
  • Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and ion chromatography(IC) were employed to analyze the thermal behavior of $Li_xCoO_2$ cathode material of lithium ion battery. The mass loss peaks appearing between 60 and 125 ${^{\circ}C}$ in TGA and the exothermic peaks with 4.9 and 7.0 J/g in DSC around 75 and 85 ${^{\circ}C}$ for the $Li_xCoO_2$ cathodes of 4.20 and 4.35 V cells are explained based on disruption of solid electrolyte interphase (SEI) film. Low temperature induced HF formation through weak interaction between organic electrolyte and LiF is supposed to cause carbonate film disruption reaction, $Li_2CO_3\;+\;2HF{\rightarrow}\;2LiF\;+\;CO_2\;+\;H_2O$. The different spectral DSC/TGA pattern for the cathode of 4.5 V cell has also been explained. Presence of ionic carbonate in the cathode has been identified by ion chromatography and LiF reported by early researchers has been used for explaining the film SEI disruption process. The absence of mass loss peak for the cathode washed with dimethyl carbonate (DMC) implies ionic nature of the film. The thermal behavior above 150 ${^{\circ}C}$ has also been analyzed and presented.

염화(鹽化)알루미늄 수용액(水溶液)으로부터 Aluminum Citrate의 합성(合成) 연구(硏究) (A Study on the Synthesis of Aluminum Citrate from Aluminum Chloride Solutions)

  • 이화영
    • 자원리싸이클링
    • /
    • 제18권6호
    • /
    • pp.18-23
    • /
    • 2009
  • 염화알루미늄 수용액으로부터 알루미늄 유기화합물인 구연산알루미늄 합성실험을 수행하였다. 수용액중 알루미늄 농도와 구연산 농도비율은 몰비 2.5가 되도록 첨가해 주었으며, 합성된 구연산알루미늄은 화학분석, X-선 회절분석, 입도분석 및 SEM 분석을 통하여 시료특성을 평가하였다. 알루미늄 수용액으로부터 구연산알루미늄을 합성하기 위해서는 에탄올/알루미늄 수용액 혼합비율을 4.0이상으로 유지하여야 하는 것으로 나타났다. 또한, 97% 이상의 회수율을 얻기 위해서는 혼합액의 pH를 7.0이상으로 조절하여야 하는 것으로 나타났다. 합성반응을 통해 얻은 구연산알루미늄의 화학분석결과 $NH_4$ 17.0%, Al 4.01% 및 C 25.7%이었으며, 이의 화학식은 $(NH_4)_5Al(C_6H_4O_7)_2{\cdot}2H_2O$임을 확인할 수 있었다.

염화(鹽化)알루미늄 수용액(水溶液)으로부터 Aluminum Tartrate의 합성(合成) 연구(硏究) (A Study on the Synthesis of Aluminum Tartrate from Aluminum Chloride Solutions)

  • 이화영
    • 자원리싸이클링
    • /
    • 제20권2호
    • /
    • pp.54-59
    • /
    • 2011
  • 염화알루미늄 수용액을 원료로 하여 알루미늄 유기화합물인 aluminum tartrate 합성실험을 수행하였다. 합성시 ethanol/Al solution 혼합비율 및 pH가 합성율에 미치는 영향을 조사하였으며, 합성된 aluminum tartrate는 화학분석, X-선 회절분석, 입도분석 및 SEM 분석을 통하여 시료특성을 평가하였다. 실험결과, ethanol/Al solution 혼합비율 3.0에서 pH 3.0 이상인 경우 aluminum tartrate 합성율은 97% 이상으로 나타났다. 합성반응을 통해 얻은 aluminum tartrate의 각 화학분석결과 $NH_4$ 9.10%, Al 4.83% 및 C 25.8%이었으며, 이의 화학식은 $(NH_4)_3Al(C_4H_4O_6)_3$임을 확인할 수 있었다.