• Title/Summary/Keyword: Organic Substance Fraction

Search Result 30, Processing Time 0.023 seconds

Formation and Removal of Trihalomethanes based on Characterization of Hydrophobic and Hydrophilic Precursors (전구물질의 소수성 및 친수성 특성에 따른 트리할로메탄의 생성과 제거에 관한 연구)

  • Jeon, Heekyung;Kim, Junsung;Choi, Yoonchan;Choi, Haeyeon;Chung, Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.123-128
    • /
    • 2008
  • The Dissolved Organic Carbon (DOC) existing in a water includes both hydrophobic and hydrophilic substances however, most of the discussion focuses on hydrophobic substances. The hydrophobic fraction was easily removed by absorption or coagulation more than hydrophilic fraction. Therefore, control of the hydrophilic fraction is very important in water treatment process. This study is to determine the variation of DOC, the removal efficiency of DOC, and Trihalomethane formation potential (THMFP) after each stage of water treatment process by fractionating Natural Organic Matters (NOM) into hydrophobic and hydrophilic substance. DOC from raw water was fractionated at acidic pH (pH<2) using XAD 8 resin column, into two fraction : hydrophobic substance (i.e. humic substance) adsorbed on XAD 8 and hydrophilic substance which represent the organics contained in the final effluent. THMFP was carried out according to the following set condition: Cl2/DOC=4 mg/mg, incubation at $25^{\circ}C$ in darkness, pH 7 adjust with HCl or NaOH as necessary, and 72hour-contact time. THMs analyzed in this study were chloroform, bromodichloromethane, dibromochloromethan, and bromoform. Sewage was almost evenly split between the hydrophobic (56%) and hydrophilic fraction (44%). But, Aldrich humic substance (AHS) was found to contain less hydrophilics (14%) than hydrophobics (86%). The formation of THMs may depend on the source which is characterized by the composition of organic matters such as AHS and sewage. The THMFP yield of sewage and AHS were assessed as follows. The value of the THMFP reaction yield, AHS $172.65{\mu}g/mg$, is much higher than that of sewage $41.68{\mu}g/mg$. This illustrates possible significant difference in THMFP according to the component type and the proportion of organic matter existing in water source. Apparently AHS react with chlorine to produce more THMFP than do the smaller molecules found in sewage. Water treatment process may reduce THMFP, nevertheless residual DOC (the more hydrophilic substance) has significant THMFP. Further reduction in organic halide precursors requires application of alternative treatment techniques.

Antimicrobial Activities of (-)Epicatechin from Ulmus davidiana var. japonica Cortex

  • Lee, Gyu-Hee;Shim, Chang-Ju;Chang, Yeong-Il;Park, Seong-Hyun;Oh, Hong-Rock;Oh, Man-Jin
    • Preventive Nutrition and Food Science
    • /
    • v.6 no.4
    • /
    • pp.230-234
    • /
    • 2001
  • The extract of Ulmus davidiana var. japonica cortex has known as natural anti-inflammatory substance in East Asia. For the identification of antimicrobial substance, it was extracted by using methanol and fractionated by using different organic solvents. The fraction of butanol was represented the highest antimicrobial activities. Therefore, the butanol fraction was purified and identified the chemical structure by $^1$H and $^{13}$ C-NMR spectra, FT-IR and EI/MS spectroscopies. The isolated antimicrobial substance was identified as cis-2-[3,4-dihydroxy phenyl]-3,4-dihydro-2H-1-benzopyran-3,5,7-triol, which has commonly known as (-)epicatechin. Its minimum inhibitory concentrations (MICs) against Staphylococcus aureus and Listeria monocytogenes were shown as 100 $\mu\textrm{g}$/mL, respectively.

  • PDF

Evaluating Soil Carbon Changes in Paddy Field based on Different Fraction of Soil Organic Matter

  • Seo, Myung-Chul;Cho, Hyeon-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.736-743
    • /
    • 2015
  • Organic matter plays important roles in soil ecosystem in terms of carbon and nitrogen cycles. Due to recent concerns on climate change, carbon sequestration in agricultural land has become one of the most interesting and debating issues. It is necessary to understand behavior of soil carbon for evaluating decomposition or sequestration of organic matter and analyzing potential carbon decomposition pattern about the kinds of organic matter sources to cope with well. In order to evaluate decomposition of soil carbon according to organic material during cultivating rice in paddy field, we treated organic material such as hairy vetch, rice straw, oil cake fertilizer, and manure compost at $50{\times}50{\times}20cm$ blocks made of wood board, and analyzed carbon contents of fulvic acid and humic acid fraction, and total carbon periodically in 2013 and 2014. Soil sampling was conducted on monthly basis. Four Kinds of organic matter were mixed with soil in treatment plots on 2 weeks before transplanting of rice. The treatment of animal compost showed the highest changes of total carbon, which showed $7.9gkg^{-1}$ in May 2013 to $11.6gkg^{-1}$ in October 2014. Fulvic acid fraction which is considered to easily decompose ranged from 1 to $2gkg^{-1}$. Humic acid fraction was changed between 1 to $3gkg^{-1}$ in all treatments until organic material had been applied in 2014. From May to August in the second year, the contents of humic acid fraction increased to about $4gkg^{-1}$. The average of humic fraction carbon at treatments of animal compost was recorded highest among treatments during two years, $2.1gkg^{-1}$. The treatment of animal compost has showed the lowest ratio of fulvic acid fraction, humic acid fraction compared with other treatments. The average ratio of fulvic fraction carbon in soil ranged from 16 to 20%, and humic fraction carbon ranged from 19 to 22%. In conclusion, animal compost including wood as bulking agent is superior in sequestrating carbon at agricultural land to other kinds of raw plant residue.

Isolation of Antifungal Activity Substance from Rheum australe D. Don Roots against Fusarium oxysporum f. sp. lycopersici (Saccardo) Snyder & Hansen (장변대황(Rheum australe D. Don)으로부터 분리된 토마토 시들음병원균(Fusarium oxysporum f. sp. lycopersici (Saccardo) Snyder & Hansen)에 대한 항진균 활성물질 구명)

  • Choi, Ji-Su;Lee, Dong-Woon;Choi, Yong-Hwa
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.1
    • /
    • pp.95-108
    • /
    • 2020
  • To develop an environment-friendly fungicide for controlling tomato wilt diseases, antifungal active substance was isolated Rheum australe D. Don roots against Fusarium oxysporum f. sp. lycopersici, a pathogen of tomato wilt, in this study. Methanol extract obtained from Rheum australe roots was successively fractionated with hexane, chloroform, ethyl acetate, butanol and water. The ethyl acetate fraction, which showed the highest antifungal activity, was separated by column chromatography, and 60 subfractions were obtained. The 60 subfractions were anlayzed for antifungal activities by bioassay. The active compound was identified as 5-[(E)-2- (3-hydroxy-4-methoxyphenyl)ethenyl]benzene-1,3-diol (rhapontigenin) by NMR and GC-MS analysis. As a result of testing antifungal activity of rhapontigenin against Fusarium oxysporum, EC50 of rhapontigenin was showed strong antifungal activity at 7.48 mg/L. Therefore, this study showed that the Rheum australe roots extract can be a potential candidate which is a environment-friendly fungicide against Fusarium oxysporum.

Assessment of Methane Potential in Hydro-thermal Carbonization reaction of Organic Sludge Using Parallel First Order Kinetics (병열 1차 반응속도식을 이용한 유기성 슬러지 수열탄화 반응온도별 메탄생산퍼텐셜 평가)

  • Oh, Seung-Yong;Yoon, Young-Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.2
    • /
    • pp.128-136
    • /
    • 2016
  • BACKGROUND: Hydrothermal carbonization reaction is the thermo-chemical energy conversion technology for producing the solid fuel of high carbon density from organic wastes. The hydrothermal carbonization reaction is accompanied by the thermal hydrolysis reaction which converse particulate organic matters to soluble forms (hydro-thermal hydrolysate). Recently, hydrothermal carbonization is adopted as a pre-treatment technology to improve anaerobic digestion efficiency. This research was carried out to assess the effects of hydro-thermal reaction temperature on the methane potential and anaerobic biodegradability in the thermal hydrolysate of organic sludge generating from the wastewater treatment plant of poultry slaughterhouse .METHODS AND RESULTS: Wastewater treatment sludge cake of poultry slaughterhouse was treated in the different hydro-thermal reaction temperature of 170, 180, 190, 200, and 220℃. Theoretical and experimental methane potential for each hydro-thermal hydrolysate were measured. Then, the organic substance fractions of hydro-thermal hydrolysate were characterized by the optimization of the parallel first order kinetics model. The increase of hydro-thermal reaction temperature from 170℃ to 220℃ caused the enhancement of hydrolysis efficiency. And the methane potential showed the maximum value of 0.381 Nm3 kg-1-VSadded in the hydro-thermal reaction temperature of 190℃. Biodegradable volatile solid(VSB) content have accounted for 66.41% in 170℃, 72.70% in 180℃, 79.78% in 190℃, 67.05% in 200℃, and 70.31% in 220℃, respectively. The persistent VS content increased with hydro-thermal reaction temperature, which occupied 0.18% for 170℃, 2.96% for 180℃, 6.32% for 190℃, 17.52% for 200℃, and 20.55% for 220℃.CONCLUSION: Biodegradable volatile solid showed the highest amount in the hydro-thermal reaction temperature of 190℃, and then, the optimum hydro-thermal reaction temperature for organic sludge was assessed as 190℃ in the aspect of the methane production. The rise of hydro-thermal reaction temperature caused increase of persistent organic matter content.

Influence of Temperature on the Treatment Efficiency of Chlorinated Organic Substances in Groundwater by Permeable Reactive Barrier (염소계 유기화합물로 오염된 지하수의 반응성 투과 벽체 처리 효율에 대한 온도의 영향)

  • Kim, Sun-Hye;Kim, Eun-Zi;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.175-183
    • /
    • 2014
  • The influence of temperature on the treatment efficiency of chlorinated organic substances contained in groundwater by permeable reactive barrier which is composed of $Fe^{\circ}$ has been investigated by constructing the Pourbaix diagrams for Fe-$H_2O$ system at different temperatures based on thermodynamic estimation. In aerobic condition, the equilibrium potentials for $Fe^{\circ}/Fe^{2+}$ and $Fe^{2+}/Fe^{3+}$ were observed to increase, therefore, the dechlorination reaction for organic pollutants by $Fe^{\circ}$ was considered to decline with temperature due to the diminished oxidation of reactive barrier. The result for the variations of the ionization fraction of $Fe^{2+}$ and $Fe^{3+}$ ion in the pH range of 0 ~ 2.5 obtained by employing Visual MINTEQ program showed that the ionization fraction of $Fe^{2+}$ increased with pH, however, that of $Fe^{3+}$ decreased symmetrically and the extent of the variation of ionization fraction for both ions was raised as temperature rises. The equilibrium pH for $Fe^{3+}/Fe(OH)_3$ was examined to decrease with temperature so that the treatment efficiency of chlorinated organic substance was expected to decrease with temperature due to the enhanced formation of passivating film in aerobic condition. The change of the reactivity of a specific chemical species with temperature was defined quantitatively based on the area of its stable region in Pourbaix diagram and depending on this the reactivity of $Fe^{3+}$ was shown to decrease with temperature, however, that of $Fe(OH)_3$ was decreased monotonously as temperature is raised for $Fe^{3+}/Fe(OH)_3$ equilibrium system. In anaerobic condition, the equilibrium potential for $Fe^{\circ}/Fe^{2+}$ was observed to rise and the equilibrium pH for $Fe^{2+}/Fe(OH)_2$ were examined to decrease as temperature increases, therefore, similar to that for aerobic condition the efficiency of the dechlorination reaction for organic substances was considered to be diminished when temperature rises because of the reduced oxidation of $Fe^{\circ}$ and increased formation of $Fe(OH)_2$ passivating film.

Amino Acid Composition and characteristic of dissolved organic Compounds in the Yellow Sea (황해의 용존 유기물 특성 및 아미노산 조성)

  • 박용철;윤철호
    • 한국해양학회지
    • /
    • v.29 no.2
    • /
    • pp.171-182
    • /
    • 1994
  • Dissolved free amino acid (DFAA) dissolved hydrolyzable amino acid (DHAA) and D/L amino acid racemic ratio in the dissolved organic compounds were studied to investigate the biogeochemical characteristics of dissolved organic compound in the Yellow Sea. Concentration of total DFAA ranged from 0.06 uM to 0.26 uM in the study area. DFAA composition showed that aspiratae, glutamate, serine, glycine and alanine were predominant. According to characteristics of functional group of amino acid, these belonged to hydroponic group. C-18 short column cartridge (Sep-Pak) activated by methanol was used to extract organic macromolecules in the seawater. In operational scheme, macromolecules were divided into two fractions. Geomacromolecule fraction eluted with 50% methanol was used to extract organic macromolecules in the seawater. In operational scheme, macromolecules were divided into two fractions. Geomacromolecule fraction eluted with 50% methanol was moderately hydrophilic and showed characteristics of humic substance in the seawater. Biomacromolecule fraction eluted with 100% methanol was hydrophobic and most abundant in the surface seawater samples. DHAA was much higher than DFAA in this study area. DHAA ranged from 2.05 uM to 6.19 uM in the B-fraction and from 8.13 uM to 24.46 uM in the G-fraction. DHAA was higher in the surface water than in the bottom water where the vertical stratification developed well. The result of HPLC analysis of D/L amino acid showed that low racemic ratio was found in the B-fraction. It implies that the B-fraction is relatively younger than the G-fraction and freshly derived from biosphere.

  • PDF

Isolation of Antimicrobial Active Substance from Aristolochia tagala Champ. against Sclerotial Rot (Sclerotinia sclerotiorum) (이엽마두령(Aristolochia tagala Champ.)추출물로부터 균핵병 병원균(Sclerotinia sclerotiorum)에 대한 항균 활성물질 탐색)

  • Kim, Hyun-Sang;Shon, Jinhan;Choi, Yong-Hwa
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.951-962
    • /
    • 2015
  • To develop environment-friendly agricultural products with anti-microbial activity against Sclerotinia sclerotiorum as a pathogen of sclerotium disease, Aristolochia tagala Champ. was extracted by methanol and its extract was fractionated into several solvent fractions. The chloroform fraction, which showed the highest antimicrobial activity, was separated by column chromatography and obtained forty three subfractions. The forty three fractions were searched the anti-fungal activities by bioassay. The most active No. 26 subfraction was analyzed by GC-MS. Each mass spectra, corresponding to each peak of chromatogram, was compared to MS database of Wiley library. As a result, 2,4-di-tetra-butyl-phenol, 2-mono-palmitin, 1-mono-stearin were profiled as maine compounds in No. 26 subfraction. Bioassay using commercial 1-mono-stearin to test for the anti-microbial activity conformed the antimicrobial active compound. In conclusion, 1-mono-stearin identified from Aristolochia tagala Champ. was antimicrobial chemical against Sclerotinia sclerotiorum.

Isolation of Antimicrobial Active Substance from Usnea longissima against Sclerotial Rot (Sclerotinia sclerotiorum) (송라(Usnea longissima)추출물로부터 균핵병 병원균(Sclerotinia sclerotiorum)에 대한 항균 활성물질 탐색)

  • Kwon, Yubin;Choi, Yong-Hwa
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.887-896
    • /
    • 2015
  • To develop environment-friendly agricultural products with anti-microbial activity against Sclerotinia sclerotiorum as a pathogen of sclerotium disease, Usnea longissima was extracted by methanol and its extract was fractionated into several solvent fractions. The chloroform fraction, which showed the highest antimicrobial activity, was separated by silica gel-column chromatography and obtained into nine group subfractions. The nine group fractions were searched the antifungal activities by bioassay. The most active No. 3 subfraction was analyzed by GC-MS. Each mass spectra, corresponding to each peak of chromatogram, was compared to database of Wiley library. As a result, Usnic acid was identified as main compounds. In conclusion, Usnic acid isolated from Usnea longissima was antimicrobial chemical against Sclerotinia sclerotiorum as a pathogen of sclerotium disease.

Antibacterial Activity of the Phaeophyta Ecklonia stolonifera on Methicillin-resistant Staphylococcus aureus

  • Eom, Sung-Hwan;Kang, Min-Seung;Kim, Young-Mog
    • Fisheries and Aquatic Sciences
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In an effort to discover an alternative therapeutic agent against methicillin-resistant Staphylococcus aureus (MRSA), several medicinal plants and seaweeds were evaluated for its antibacterial activity against MRSA. A methanolic extract of the Phaeophyta Ecklonia stolonifera exhibited significant antibacterial activity against MRSA. To perform more detailed investigation on antibacterial activity, the methanol extract of E. stolonifera was further fractionated with organic solvents such as hexane, dimethylchloride, ethyl acetate, and n-butanol. Among them, the hexane fraction showed the strongest antibacterial activity against MRSA strains with MIC from 500 to $600 {\mu}g/mL$. The fraction also exhibited a bactericidal activity against MRSA, indicating that E. stolonifera contains a bactericidal substance against MRSA.