• Title/Summary/Keyword: Organic Se

Search Result 603, Processing Time 0.028 seconds

Organic TFTs using PVP Bank and TIPS-Pentacene Semiconductor Layer patterned by Ink Jet Printing (잉크젯 방식으로 PVP 뱅크와 TIPS-펜타센 반도체 층을 제작한 유기 박막트랜지스터)

  • Kim, Se-Min;Park, Jong-Seung;Song, Chung-Kun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.992-998
    • /
    • 2009
  • We investigated the influence of organic solvents on the droplet properties of 6,13-bis (triisopropylsilylethynyl) pentacene (TIPS-pentacene), which was used for semiconductor of organic thin film transistors (OTFTs) and deposited by ink jet printing. From the result of the investigation, the conditions of a suitable solvent is that boiling point should be above $200^{\circ}C$ to reduce coffee stain and the surface tension above 32 dyn/cm to decrease the droplet size. Consequently, we selected tetralin which have a high boiling point ($207^{\circ}C$) and high surface tension (34.3 dyn/cm) as the solvent for TIPS-pentacene, and applied it to OTFTs. In fabrication process the conventional bank process employing photolithography and etching process was replaced by ink jet printed bank process, resulting in simplifying the process. Especially, polyvinylphenol was used for the bank, and the high hydrophobicity could improve the confinement of TIPS molecules inside the bank, enhancing the performance over the conventional hydrophilic polyvinylalcohol bank. The mobility was $0.18\;cm^2/Vs$, current on/off ratio $2.09{\times}10^5$, subthreshold slope 0.42 V/dec, and off state current $0.049\;pA/{\mu}m$.

Highly Stable Photoluminescent Qunatum Dot Multilayers by Layer-by-Layer Assembly via Nucleophilic Substitution Reaction in Organic Media

  • Yun, Mi-Seon;Kim, Yeong-Hun;Jeong, Sang-Hyeok;Baek, Hyeon-Hui;Jo, Jin-Han
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.244.2-244.2
    • /
    • 2011
  • We introduce a novel and robust method for the preparation of nanocomposite multilayers, which allows the excellent photoluminescent (PL) properties as well as the accurate control over the composition and dimensions of multilayers. By exchanging the oleic acid stabilizers of CdSe@ZnS quantum dots (QDs) synthesized in organic solvent with 2-bromo-2-methylpropionic acid (BMPA) in the same solvent, these nanoparticles were be alternately deposited by nucleophilic substitution reaction with highly branched poly(amidoamine) dendrimer (PAMA) through layer-by-layer (LbL) assembly process. Our approach does not need to be transformed into the water-dispersible nanoparticles with electrostatic or hydrogen-bonding groups, which can deteriorate their inherent properties, for the built-up of multilayers. The nanocomposite multilayers including QDs exhibited the strong PL properties achieving densely packed surface coverage as well as long-term PL stability under atmospheric conditions in comparison with those of conventional LbL multilayers based on electrostatic interaction. Furthermore, we demonstrate that the flexible multilayer films with optical properties can be easily prepared using nucleophilic substitution reaction between bromo and amino groups in organic media. This robust and tailored method opens a new route for the design of functional film devices based on nanocomposite multilayers.

  • PDF

Effects of Organic Acids on Solubility of Calcium (칼슘용해에 미치는 유기산의 영향)

  • Jang, Se-Young;Park, Nan-Young;Jeong, Yong-Jin
    • Food Science and Preservation
    • /
    • v.12 no.5
    • /
    • pp.501-506
    • /
    • 2005
  • This study was conducted to investigate the effect of organic acids on solubility of calcium. As a results, acetic and lactic acid showed the most excellent solubility of calcium. Calcium solubility was increased at initial total acid (4%) in citric acid but calcium was insoluble in tartaric acid. After solving, pH and residuals were decreased where as total acidity and calcium content were increased as increment of initial acidity of acetic and lactic acid. Calcium content in seaweed calcium and calcium carbonate were higher than that of nano calcium. Solubility of calcium was more conspicuous at lactic acid than acetic acid.

Effect of particle size and scanning cup type for near infrared reflection on the soil property measurement

  • Ryu, Kwan-Shig;Cho, Rae-Kwang;Park, Woo-Churl;Kim, Bok-Jin
    • Near Infrared Analysis
    • /
    • v.1 no.2
    • /
    • pp.35-39
    • /
    • 2000
  • The purpose of this research was to find out suitable soil sample preparation and sample holding tools for NIR reflection radiation for estimating soil components. NIR reflectance was scanned at 2nm intervals from 1,100 to 2,500nm with an InfraAlyzer 500(Bran+Luebbe Co.). Coarse(2.0mm) and fine(0.5mm) soil sample and various sample holding tools were used to obtain mean diffuse reflection of the soil for the calibration and validation of the calibration set in estimating moisture, organic matter and total nitrogen of the soils. Multiple linear regression was used to obtain the best correlation of NIR spectroscopy method. Correlation of NIR spectroscopy method. Correlation of NIR spectra for finely and coarsely sized soil did not show much difference. The standard errors of prediction(SE) using different types of sample holding tools for organic matter, total nitrogen and soil moisture were better than 0.765, 0.041 and 0.63% respectively. From the results it can be concluded that NIR spectroscopy with flow type cell could be used as a fast routine testing method in quantitative determination of organic matter, total nitrogen and soil moisture.

Inter-Chain Interactions in Arrays of Metal-Organic Hybrid Chains on Ag(111)

  • Park, Ji-Hun;Jeong, Gyeong-Hun;Yun, Jong-Geon;Kim, Ho-Won;Gang, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.302-302
    • /
    • 2011
  • Fabrications of metal-organic hybrid networks attracted much attention due to possible applications in gas storages, heterogeneous catalyses, information storages, and opto-electronic devices. One way to construct three-dimensional hybrid structures is to make the arrays of planar or linear metal-organic hybrid structures which are linked through electrostatic interactions. As a model study, we fabricated the arrays of one-dimensional hybrid chains and investigated inter-chain interactions between adjacent hybrid chains using scanning tunneling microscopy (STM) and spectroscopy (STS) on Ag(111). Brominated anthracene molecules were used to grow the arrays of hybrid chains on Ag(111). We proposed atomic models for the observed structures. Linear chains are made of repetition of Ag-anthracene units. Br atoms are attached to anthracene molecules through Br-H structures which mediate inter-chain interactions. Two different apparent heights were observed in anthracene molecules. Molecules having a Br-H connection look brighter than those with two connections due to electronic effect. When a chain is laterally manipulated with STM tip, Br atoms move together with the chain implying that Br-H inter-chain interactions are quite strong.

  • PDF

Insulation Breakdown Characteristics of Inverter Surge Resistant Enameled Wire Prepared with Organic/Inorganic Hybrid Nanocomposite

  • Park, Jae-Jun;Shin, Seong-Sik;Lee, Jae-Young;Han, Se-Won;Kang, Dong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.190-193
    • /
    • 2015
  • Insulation breakdown characteristics of an inverter surge resistant enameled wire were investigated in a twisted pair prepared with organic/inorganic hybrid nanocomposite. Organic polymer was polyesterimide-polyamideimide (EI/AI) and inorganic material was a nano-sized silica. The enamel thickness was 50 μm and the diameters of enameled copper wires were 0.75, 1.024, and 1.09 mm, respectively. There were many air gaps in a twisted pair. Therefore, when the voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge according to Paschen’s law. The insulation lifetime of the hybrid wire (HW) was 41,750 sec, which was 515.4 times more than the 81 sec of EI/AIW. In addition, the shape parameter of HW was 2.58, which was 3.4 times higher than 0.75 of EI/AIW.

Synthesis of Organic Dyes with Linkers Between 9,9-Dimethylfluorenyl Terminal and α-Cyanoacrylic Acid Anchor, Effect of the Linkers on UV-Vis Absorption Spectra, and Photovoltaic Properties in Dye-Sensitized Solar Cells

  • Lee, Min-Woo;Cha, Su-Bong;Yang, Su-Jin;Park, Se-Woong;Kim, Kyung-Kon;Park, Nam-Gyu;Lee, Duck-Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2269-2279
    • /
    • 2009
  • Six metal-free organic dyes having thiophene (1), benzene-thiophene (2), thiophene-benzene (3), thiophene-pyridine (4), thiophene-thiophene (5), and pyridine (6) linkers between 9,9-dimethylfluorenyl terminal group and $\alpha$-cyanoacrylic acid anchor were synthesized. Among them, organic dye 5 showed the longest ${\lambda}_{max}$ value (424 nm) in UV-Vis absorption spectrum, better incident monochromatic photon-to-current conversion efficiency (IPCE), highest short circuit photocurrent density ($J_{SC},\;9.33\;mA^2/cm^2$), and highest overall conversion efficiency ($\eta$, 3.91%).

Development of Inverted Organic Photovoltaics with Anion doped ZnO as an Electron Transporting Layer

  • Jeong, Jae Hoon;Hong, Kihyon;Kwon, Se-Hun;Lim, Dong Chan
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.490-497
    • /
    • 2016
  • In this study, 3-dimensional ripple structured anion (chlorine) doped ZnO thin film are developed, and used as electron transporting layer (ETL) in inverted organic photovoltaics (I-OPVs). Optical and electrical characteristics of ZnO:Cl ETL are investigated depending on the chlorine doping ratio and optimized for high efficient I-OPV. It is found that optimized chlorine doping on ZnO ETL enhances the ability of charge transport by modifying the band edge position and carrier mobility without decreasing the optical transmittance in the visible region, results in improvement of power conversion efficiency of I-OPV. The highest performance of 8.79 % is achieved for I-OPV with ZnO:Cl-x (x=0.5wt%), enhanced ~10% compared to that of ZnO:Cl-x (x=0wt%).

Impedance spectroscopy analysis of organic light emitting diodes with the $O_2$ anode plasma treatment (저압 산소 플라즈마 처리된 ITO박막을 이용한 유기 EL 소자의 성능 향상에 관한 임피던스 분석)

  • Kim, Hyun-Min;Park, Hyung-June;Lee, Jun-Sin;Oh, Se-Myoung;Jung, Dong-Ggeun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.436-437
    • /
    • 2006
  • In this work, impedance Spectroscopic analysis was applied to study the effect of plasma treatment on the surface of indum-tin oxide (ITO) anodes using $O_2$ gas and to model the equivalent circuit for organic light emitting diodes (OLEDs) with the $O_2$ plasma treatment of ITO surface at the anodes. This device with ITO/TPD/Alq3/LiF/Al structure can be modeled as a simple combination of a resistor and a capacitor. The $O_2$ plasma treatment on the surface of ITO shifts the vacuum level of the ITO as a result of which the barrier height for hole injection at the ITO/organic interface is reduced. The impedance spectroscopy measurement of the devices with the $O_2$ plasma treatment on the surface of ITO anodes shows change of values in parallel resistance ($R_p$) and parallel capacitance ($C_p$).

  • PDF

Pre-ozonation for removal of algal organic matters (AOMs) and their disinfection by-products (DBPs) formation potential

  • Jing Wang;Se-Hyun Oh;Yunchul Cho
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2023
  • As a result of algal bloom, algal organic matters (AOMs) are rapidly increased in surface water. AOMs can act as precursors for the formation of harmful disinfection by-products (DBPs), which are serious problems in water treatment and human health. The main aim of this study is to characterize the formation of DBPs from AOMs produced by three different algae such as Oscillatoria sp., Anabaena sp., and Microcystis aeruginosa under different algal growth phases. In an effort to examine formation of DBPs during chlorination, chloroform (TCM), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were determined under various CT (product of disinfectant concentration and contact time, mg·min/L) values. Generally, the amounts of DBPs tended to increase with increasing CT values at the most growth phases. However, there was a significant difference between the amounts of DBPs produced by the three algal species at different growth phases. This result is likely due to the chemical composition variability of AOM from different algae at different growth phases. In addition, the effect of pre-ozonation on coagulation for the removal of AOMs from three algal species was investigated. The pre-ozonation had a positive effect on the coagulation/flocculation of AOMs.