• Title/Summary/Keyword: Organic Schottky Diode

Search Result 6, Processing Time 0.019 seconds

Modification of Schottky Barrier Properties of Ti/p-type InP Schottky Diode by Polyaniline (PANI) Organic Interlayer

  • Reddy, P.R. Sekhar;Janardhanam, V.;Jyothi, I.;Yuk, Shim-Hoon;Reddy, V. Rajagopal;Jeong, Jae-Chan;Lee, Sung-Nam;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.664-674
    • /
    • 2016
  • The electrical properties of Ti/p-type InP Schottky diodes with and without polyaniline (PANI) interlayer was investigated using current-voltage (I-V) and capacitance-voltage (C-V) measurements. The barrier height of Ti/p-type InP Schottky diode with PANI interlayer was higher than that of the conventional Ti/p-type InP Schottky diode, implying that the organic interlayer influenced the space-charge region of the Ti/p-type InP Schottky junction. At higher voltages, the current transport was dominated by the trap free space-charge-limited current and trap-filled space-charge-limited current in Ti/p-type InP Schottky diode without and with PANI interlayer, respectively. The domination of trap filled space-charge-limited current in Ti/p-type InP Schottky diode with PANI interlayer could be associated with the traps originated from structural defects prevailing in organic PANI interlayer.

Modeling of Organic Schottky Diodes for Circuit Simulations (회로 시뮬레이션을 위한 유기물 쇼트기 다이오드 모델링)

  • Kim, Hyo-Jong;Baatar, Nyambayar;Kim, Shi-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.6
    • /
    • pp.7-12
    • /
    • 2010
  • A semi-empirical organic schottky diode model is proposed for circuit simulation. We have set up a full custom design environment for organic schottky diode circuit using Spectre AHDL, which is widely used commercial EDA tool. We measured frequency response from fabricated rectifier, and it was compared to circuit simulation results using the AHDL model. The frequency response of the fabricated rectifier circuit is not sufficient for 13.56MHz RFID, however, it is enough for 135kHz-band RFID.

Implementation of Charge-Pump Active-Matrix OLED Panel with $64\;{\times}\;64$ Pixels Using $ITO/SiO_2/ITO$ Capacitors and a-Si:H Schottky Diodes

  • Na, Se-Hwan;Seo, Jong-Wook;Kwak, Mi-Young;Shim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1267-1270
    • /
    • 2006
  • Organic light-emitting diode (OLED) display panel with $64\;{\times}\;64$ pixels utilizing the charge-pump (CP) pixel addressing method was fabricated using conventional thin-film processes. Each pixel consists of a-Si:H Schottky diode and $ITO/SiO_2/ITO$ capacitor. It is shown that CP-OLED is technically feasible for information display and a driving voltage below $4V_{pp}$ is enough for nominal operation.

  • PDF

Fabrication and Electrical Characterization of Pentacene-based diodes (Pentacene을 이용한 diode의 제작 및 전기적 특성)

  • 김대식;이용수;박재훈;최종선;강도열
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.4
    • /
    • pp.379-381
    • /
    • 2000
  • Organic materials have potential advantages to be utilized as semiconductors in field effect transistors and light emmiting diodes. Gold, Aluminium, Silver, Chromium and Indium are used by electrodes. Gold is ohmic contact and the others are schottky contact. In this study, Pentacene and various electrode materials were deposited by Organic Molecular Beam Deposition (OMBD) and vacuum evaporation respectively. Those films were photolithographically patterned for measurements. These devices showed no degration after a 15 days of storage in laboratory environment.

  • PDF

Fabrication and performance evaluation of ultraviolet photodetector based on organic /inorganic heterojunction

  • Abdel-Khalek, H.;El-Samahi, M.I.;Salam, Mohamed Abd-El;El-Mahalawy, Ahmed M.
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1496-1506
    • /
    • 2018
  • Organic/inorganic ultraviolet photodetector was fabricated using thermal evaporation technique. Organic/inorganic heterojunction based on thermally evaporated copper (II) acetylacetonate thin film of thickness 200 nm deposited on an n-type silicon substrate is introduced. I-V characteristics of the fabricated heterojunction were investigated under UV illumination of intensity $65mW/cm^2$. The diode parameters such as ideality factor, n, barrier height, ${\Phi}_B$, and reverse saturation current, $I_s$, were determined using thermionic emission theory. The series resistance of the fabricated diode was determined using modified Nord's method. The estimated values of series resistance and barrier height of the diode were about $0.33K{\Omega}$ and 0.72 eV, respectively. The fabricated photodetector exhibited a responsivity and specific detectivity about 9 mA/W and $4.6{\times}10^9$ Jones, respectively. The response behavior of the fabricated photodetector was analyzed through ON-OFF switching behavior. The estimated values of rise and fall time of the present architecture under UV illumination were about 199 ms and 154 ms, respectively. Finally, enhancing the photoresponsivity of the fabricated photodetector, post-deposition plasma treatment process was employed. A remarkable modification of the device performance was noticed as a result of plasma treatment. These modifications are representative in a decrease of series resistance and an increase of photoresponsivity and specific detectivity. The process of plasma treatment achieved an increment of external quantum efficiency from 5.53% to 8.34% at -3.5 V under UV illumination.

Fabrication of Charge-pump Active-matrix OLED Display Panel with 64 ${\times}$ 64 Pixels

  • Na, Se-Hwan;Shim, Jae-Hoon;Kwak, Mi-Young;Seo, Jong-Wook
    • Journal of Information Display
    • /
    • v.7 no.1
    • /
    • pp.35-40
    • /
    • 2006
  • Organic light-emitting diode (OLED) display panel using the charge-pump (CP) pixel addressing scheme was fabricated, and the results show that it is applicable for information display. A CP-OLED panel with 64 ${\times}$ 64 pixels consisting of thin-film capacitors and amorphous silicon Schottky diodes was fabricated using conventional thin-film processes. The pixel drive circuit passes electrical current into the OLED cell during most of the frame period as in the thin-film transistor (TFT)-based active-matrix (AM) OLED displays. In this study, the panel was operated at a voltage level of below 4 V, and this operation voltage can be reduced by eliminating the overlap capacitance between the column bus line and the common electrode.