• Title/Summary/Keyword: Organic Production System

Search Result 514, Processing Time 0.032 seconds

Odor Emission from Sediments in Sewer Systems and Odor Removal using an Electrolytic Oxidation Process (하수관거에 퇴적된 유기물에 의한 악취 발생과 산화전리시스템을 이용한 악취 저감)

  • Ahn, Hae-Young;Shin, Seung-Kyu;Song, Ji-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.703-710
    • /
    • 2011
  • Odor emission from domestic sewer systems has become a serious environmental problem. An investigation on a sewer manhole revealed that anaerobic decay of sediment organic matters (SOMs) and related declines of oxidation reduction potential (ORP) in the sediment layer were the main reason of the production of volatile sulfur compounds. In addition, as the anaerobic decaying period continued, the odor intensity rapidly increased with increasing concentrations of $H_2S$ and dimethyl sulfide. As a feasible method to control SOMs and to minimize odor emission potentials, an electrolytic oxidation process has been employed to the sediment sludge phase. In this study, voltages applied to the electrolytic oxidation process were varied as a main system parameter, and its effects on odor removal efficiencies and reaction characteristics were investigated. At the applied voltages greater than 20 V, the system efficiently oxidized the organic matter, and the ORP in the sludge phase increased rapidly. As a consequence, the removal efficiency of hydrogen sulfide was found to be >99% within 60 minutes of the electrolytic oxidation. Overall, the electrolytic oxidation process can be an alternative to control odor emission from sewer systems, and a threshold input energy needs to be determined to achieve effective operation of the process.

Applications of Self-assembled Monolayer Technologies in MEMS Fabrication (MEMS 공정에서의 자기 조립 단분자층 기술 응용)

  • Woo-Jin Lee;Seung-Min Lee;Seung-Kyun Kang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.13-20
    • /
    • 2023
  • The process of microelectromechanical system (MEMS) fabrication involves surface treatment to impart functionality to the device. Such surface treatment method is the self-assembled monolayer (SAM) technique, which modifies and functionalizes the surface of MEMS components with organic molecule monolayer, possessing a precisely controllable strength that depends on immersion time and solution concentration. These monolayers spontaneously adsorb on polymeric substrates or metal/ceramic components offering high precision at the nanoscale and modifying surface properties. SAM technology has been utilized in various fields, such as tribological property control, mass-production lithography, and ultrasensitive organic/biomolecular sensor applications. This paper provides an overview of the development and application of SAM technology in various fields.

Effects of carbon source and nitrogen concentration on the P-EPS and Chl-a production at the MMBR system (MMBR에서 탄소원 종류 및 질소 농도가 S. quadricauda의 P-EPS 및 Chl-a 생성에 미치는 영향)

  • Choi, Yun-Jeong;Sim, Tae-Suk;Hwang, Sun-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.405-415
    • /
    • 2021
  • MMBR system has been suggested as a promising system to resolve harvesting problems induced from low settling efficiency of microalgae. And recently, a lot of research on reducing fouling at the MMBR system has investigated focused on EPS in many cases. EPS of microalgae mainly consists of polysaccharides and protein components, and is produced through photosynthesis and nitrogen-carbon metabolic pathways. Especially, P-EPS is one of major compounds which occur membrane fouling phenomenon, as its hydrophobic protein components cause floc formation and cake layer accumulation. And it is already known that almost every microalgae can metabolize P-EPS or Chl-a when nitrogen sources as a substrate is insufficient or exhausted situation. With the above backgrounds, uptake rates of P-EPS or Chl-a by Scenedesmus quadricauda according to the type of carbon source and nitrogen concentration were evaluated in order to verify correlation between carbon source vs P-EPS production, and indeed Scenedesmus quadricauda uses P-EPS or Chl-a when the amounts of nitrogen sourc es in the feed is not satisfied. As a result, it was shown that P-EPS and Chl-a production were increased proportional to nitrogen concentration under organic carbon condition. And especially, the amo unts of P-EPS and Chl-a in the cell were diminished with the nitrogen source becomes insufficient or exhausted. Because P-EPS accelerates fouling at the MMBR system, P-EPS degradation by Scenedesmus quadricauda in order to get nitrogen source may contribute to reducing fouling. About a affects of N-consumed Chl-a to the MMBR fouling, more survey is needed. On the contrary, considering the purpose of MMBR system of this study, i.e. harvesting useful high value microalgae efficiently feeding adequate industrial process wastewater, it seems like difficult to maintain satisfied metabolic activity and to harvest with high yield rate using nitrogen-poor MMBR feed.

Treatment of Landfill Leachate using H2O2/O3 AOP and UASB Process (I) - Treatment Characteristics of Leachate depending on H2O2/O3 AOP Pretreatment and Available Nitrogen Form - (H2O2/O3 AOP와 UASB 공정을 이용한 매립지 침출수 처리(I) - H2O2/O3 AOP 전처리 및 질소원에 따른 침출수별 처리특성 -)

  • Jeong, Seung Hyun;Jeong, Byung Gon
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.643-650
    • /
    • 2005
  • In order to treat leachate from aged landfill site effectively, removal of biologically recalcitrant organic matter and denitrification efficiency were evaluated through the combination of $H_2O_2/O_3$ AOP pretreatment process and UASB process. The results can be summarized as follows. In case of leachate having low COD/N ratio from aged landfill site, it is possible to increase available COD for denitrification in nitrate utilizing denitrification and nitrite utilizing denitrification both by enhancing biodegradability of recalcitrant organic matter as applying $H_2O_2/O_3$ AOP to pretreatment process. In this experiment, it is found that available COD for denitrification can be increased to 1.0 and 0.4 g/day, respectively. Comparison has been made between requiring COD and available COD for denitrification in each experimental stages. It is expected that high rate of denitrification can be achieved with leachate from young landfill site because higher amount of available COD for denotrification is present in the leachate than the amount of requiring COD for denitrification. Especially, In leachate from aged landfill site with low COD/N ratio, it can be concluded that denitrification using nitrite nitrogen can enhance overall denitrification performance efficiently because denitrification using nitrite nitrogen requires less amount of carbon source than denitrification using nitrate nitrogen. Comparing the biogas production rate and nitrogen content of biogas under the condition of same amount of nitrate and nitrite addition, biogas production and nitrogen content of biogas are increased during denitrification after $H_2O_2/O_3$ AOP pretreatment process. Therefore, it can be confirmed that COD/N ratio in the leachate is increased. Applying $H_2O_2/O_3$ AOP as pretreatment system of landfill leachate seems to have little economic benefit because it requires additional carbon source to denitrify ammonia nitrogen in leachate coming from aged landfill site. However, it is possible to apply this pretreatment process to leachate from old landfill site in view of AOP process can achieve removal of biologically recalcitrant organic matter and increase of available COD for denitrification simultaneously.

Effect of Winter Rye Cultivation to Improve Soil Fertility and Crop production in Alpine Upland in Korea (동계호밀재배가 고랭지 밭토양의 비옥도 증진에 미치는 영향)

  • Zhang, Yong-Seon;Lee, Gye-Jun;Joo, Jin-Ho;Lee, Jeong-Tae;Ahn, Jae-Hoon;Park, Chol-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.4
    • /
    • pp.300-305
    • /
    • 2007
  • Soil erosion is one of the most serious problems in alpine upland in Korea. Soil fertility has continuously decreased due to serious soil erosion. To increase soil fertility, new sources of organic matter should be inputted. Therefore, the objectives of this research were to select winter cover crop as new sources of organic matter and to investigate the effect of winter cover crop on soil property changes, major crop productivity (Chinese cabbage, potato) production in highland, and disease occurrence with different cropping systems. Among 17 candidates for winter coverage crop, rye was most suitable due to it's soil covering rate, and over-wintering rate. The optimum sowing period for rye ranged from late August to late September. Soil porosity and organic matter content increased with rye cultivation. Rye cultivation during winter increased amounts of crop (both Chinese cabbage and potato) productivity up to 8%. There was little difference on amount of crop productivity depending on cropping systems such as monoculture (Chinese cabbage or potato) and Chinese cabbage-potato rotation.

Estimation of Carbon Emission and LCA (Life Cycle Assessment) From Sweetpotato (Ipomoea batatas L.) Production System (고구마의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가)

  • So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Ryu, Jong-Hee;Park, Jung-Ah;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.892-897
    • /
    • 2010
  • LCA (Life Cycle assessment) was carried out to estimate on carbon footprint and to establish of LCI (Life Cycle Inventory) database of sweetpotato production system. Based on collecting the data for operating LCI, it was shown that input of organic fertilizer was value of 3.26E-01 kg $kg^{-1}$ and it of mineral fertilizer was 1.02E-01 kg $kg^{-1}$ for sweetpotato production. It was the highest value among input for sweetpotato production. And direct field emission was 2.47E-02 kg $kg^{-1}$ during sweetpotato cropping. The result of LCI analysis focussed on greenhouse gas (GHG) was showed that carbon footprint was 4.05E-01 kg $CO_2$-eq. $kg^{-1}$ sweetpotato. Especially $CO_2$ for 71% of the GHG emission and the value was 2.88E-01 kg $CO_2$-eq. $kg^{-1}$ sweetpotato. Of the GHG emission $CH_4$, and $N_2O$ were estimated to be 18% and 11%, respectively. It might be due to emit from mainly fertilizer production (32%) and sweetpotato cultivation (28%) for sweetpotato production system. $N_2O$ emitted from sweetpotato cultivation for 90% of the GHG emission. With LCIA (Life Cycle Impact Assessment) for sweetpotato production system, it was observed that the process of fertilizer production might be contributed to approximately 90% of GWP (global warming potential). Characterization value of GWP and POCP were 4.05E-01 $CO_2$-eq. $kg^{-1}$ and 5.08E-05 kg $C_2H_4$-eq. $kg^{-1}$, respectively.

Biosorption Characteristics of Organic Matter in a Sequencing Batch Reactor : Effect of Sludge Retention Time (연속 회분식 반응기내 유기물 생물흡착특성: SRT 영향)

  • Kim, Keum-Yong;Kim, Jin-Hyung;Kim, Dae-Keun;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.175-180
    • /
    • 2008
  • The objective of this study was to investigate biosorption of organic matter on EPS(Extracellular Polymeric Substances) at different SRT(Sludge Retention Time) in a SBR(Sequencing Batch Reactor) process, which was operated with the following operation steps : Fill-React-Settle-Decant-Idle. The hydraulic retention time was set to be 24 hours. The results obtained from this study showed that the organic removal efficiency per unit microbial biomass decreased with increasing SRT, and the corresponding EPS amount also did. The percent removal of organic by biosorption increased with SRT, and it reached to 53.2% at SRT of 30 days. However, the highest biosorption per microbial biomass(48.6 mgCOD/gVSS) was found at SRT of 2 days. The EPS analysis was performed by measuring TSS, TCOD$_{Cr}$, and TKN. The EPS production per unit microbial biomass was observed to be high at a low SRT. Due to the above result, the floc formation was hindered and therefore poor settlement of sludge resulted in decreasing the COD removal efficiency. It was therefore concluded that the consideration of the system design should include the characteristic of EPS as well as other factors such as SRT, MLSS, and organic loading.

Environmental impact of livestock manure and organic fertilizer use on the Masan stream watershed (가축분뇨 및 퇴비·액비에 의한 환경영향조사 연구 - 마산천 유역의 금속성분 및 POPs를 중심으로 -)

  • Jeong, Dong-Hwan;Lee, Youngjoon;Lee, Chulgu;Choi, Sung-Ah;Kim, Minyoung;Lee, Youngseon;Kim, Mijin;Yu, Soonju
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.2
    • /
    • pp.75-87
    • /
    • 2014
  • In order to analyze environmental impact of livestock manure and organic fertilizers, this study investigated livestock-breeding and pollution loads, the status of individual and public livestock manure treatment facilities, and the status of production, supply and components of compost and liquid fertilizers in the Nonsan area. Also, on a trial basis, this study investigated the life cycle of the environmental impact of livestock manure and its organic fertilizers on stream, groundwater, and agricultural soil. The results are as follows. Firstly, were detected the range of $0.13{\sim}1.32{\mu}g/L$ of As, $0.004{\sim}0.467{\mu}g/L$ of Cd and $0.5{\sim}9.2{\mu}g/L$ of Pb as a harmful substances which show lower concentrations than person preservation criteria of water qualities and aquatic ecosystem. However, it is not clear that heavy metals affect environment such as stream, groundwater and agricultural soil. Secondly, this influence could change according to investigation time and treatment efficiency. As were detected large amounts of persistent organic pollutants(e.g. $14.24{\sim}38.47{\mu}g/L$ of acetylsalicylic acid, $1.17{\sim}2.96{\mu}g/L$ of sulfamethazine, and $2.25{\sim}174.09{\mu}g/L$ of sulfathiazole) in effluent from livestock farms and small amounts of sulfathiazole($ND{\sim}1.63{\mu}g/L$) in the stream, it is necessary to monitor POPs at individual and public livestock manure treatment facilities. However, significant environmental impact did not appear at groundwater and agricultural soil in the test area supplied with liquid fertilizers. These results could be applied to investigate the environmental impact of livestock manure through a comprehensive livestock manure management information system.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Design and Operation Guideline (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(III): 도시가스 및 수송용 - 기술지침(안) 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.67-73
    • /
    • 2019
  • In this study, to optimize the production and utilization of biogas for organic waste resources, the precision monitoring of on-site facilities and the energy balance by facility were analyzed, and the solutions for field problems were investigated, and the design and operation guidelines for pretreatment facilities and generators were presented. Gas pre-treatment is required to solve frequent failures and efficiency degradation in operation of high quality refining facilities, and processing processes such as desulfurization, dehumidification, deoxidization, dust treatment, volatile organic compounds, etc. Since these processes are substances that are also eliminated from the high-quality process, quantitative guidelines are not presented in the gas pretreatment process, but are suggested to operate during the processing process as a qualitative guideline. In particular, dust, siloxane, and volatile organic compounds are the main cause of frequent failure of high-quality processes if they are not removed from the gas pretreatment process. Design of the biogas high-quality process. The operation guidelines provide quality standards [Methane content (including propane) of 95% or more] with 90% or more utilization of the total gas generation, two systems, and a margin of 10% or more. It also proposed installing gas equalization tank, installing thermal automatic control system for controlling equalization of auxiliary fuel, installing dehumidification device at the back of high quality for removing moisture generated in the process of gas compression, installing heat-resisting facilities to prevent freezing of facilities in winter and reducing efficiency, and installing membrane facilities in particular.

Effect of PVA-Encapsulation on Hydrogen Production and Bacterial Community Structure (수소 생산과 세균 군집구조에 미치는 PVA-포괄고정화의 영향)

  • Yun, Jeonghee;Kim, Tae Gwan;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • In this study, the performances of PVA-encapsulation and non-encapsulation in a fed-batch bioreactor system were compared for biohydrogen production. Hydrogen production in the PVA-encapsulation bioreactor was not significantly different in comparison to the non-encapsulation bioreactor. However, the hydrogen gas in the encapsulation bioreactor could be stably produced when it was exposed to environmental difficulties such as pH impact by the accumulation of organic acids as fermentative metabolic products. Bacterial communities by DGGE analysis were differently shifted between the PVA-encapsulation and non-encapsulation bioreactors from the initial sludge. The community of hydrogen producing bacteria was stable during the experimental period in the PVA-encapsulation bioreactor compared to the non-encapsulation method. The absolute quantitation of the DNA copy number by a high-throughput droplet digital PCR system for six genera contributed to hydrogen production showing that the numbers of dominant bacteria existed at similar levels in the two bioreactors regardless of encapsulation. In both of two bioreactors, not only Clostridium and Enterobacter, which are known as anaerobic hydrogen producing bacteria, but also Firmicutes, Ruminococcus and Escherichia existed with $1{\times}10^5-1{\times}10^6$ copy numbers of ml-samples exhibiting rapid growth during the initial operation period.