• 제목/요약/키워드: Organic Photovoltaic

검색결과 205건 처리시간 0.033초

Isoindigo Based Small Molecules for High-Performance Solution-Processed Organic Photovoltaic Devices

  • Elsawy, W.;Lee, C.L.;Cho, S.;Oh, S.H.;Moon, S.H.;Elbarbary, A.;Lee, Jae-Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.245.2-245.2
    • /
    • 2013
  • Solution processed organic photovoltaic devices have relatively less attention compared to polymer photovoltaic devices even though they have high possibility to be developed because they have both advantages of polymer and organic, such as solution processable, no synthetic batch dependence of photovoltaic performance, high purity and high charge carrier mobility as well as relatively high efficiency (~7%). In addition, solution processed organic photovoltaic devices have an advantage of easiness to study the relationship between the molecular structure and photovoltaic performance due to its simple structure. In this work, five isoindigo based low band gap donor-acceptor-donor (D-A-D) small molecules with different electron donating strength were synthesized for investigating the relationship between the molecular structure and photovoltaic performance, especially, investigating the effects of different electron donating effect of donor group in isoindigo backbone to photovoltaic device performance. The variation of electron donating strength of donor group strongly affected the optical, thermal, electrochemical and photovoltaic device performances of isoindigo organic materials. The highest power conversion efficiency of ~3.2% was realized in bulk heterojuction photovoltaic device consisted of the ID3T as donor and PC70BM as acceptor. This work demonstrates the great potential of isoindigo moieties as electron deficient units as well as guideline for synthesis of donor-acceptor-donor (D-A-D) small molecules for realizing highly efficient solution processed organic photovoltaic devices.

  • PDF

Photovoltaic Effects in CuPc/C60 and ZnPc/C60 Depending on the Organic Layer Thickness

  • Ahn, Joon-Ho;Lee, Joon-Ung;Lee, Won-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권3호
    • /
    • pp.115-118
    • /
    • 2005
  • Organic photovoltaic properties were studied in $CuPc/C_{60}$ and $ZnPc/C_{60}$ heterojunction structure by varying the organic layer thicknesses. Current density-voltage characteristics of organic photovoltaic cells were measured using Keithley 236 source-measure unit and a 500 W xenon lamp (ORIEL 66021) for a light source. From the analyses of current-voltage characteristics such as short-circuit current density, open-circuit voltage and power conversion efficiency, optimum thickness of the organic layer were obtained.

CuPc/$C_{60}$ 이중층을 이용한 유기 광기전 소자의 전기적 특성 (Electrical Properties of Organic Photovoltaic Cell using CuPc/$C_{60}$ double layer)

  • 이호식;박용필
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.744-746
    • /
    • 2008
  • Organic photovoltaic effects were studied in a device structure of ITO/CuPc/Al and ITO/CuPc/$C_{60}$/BCP/Al. A thickness of CuPc layer was varied from 10 nm to 50 nm, we have obtained that the optimum CuPc layer thickness is around 40 nm from the analysis of the current density-voltage characteristics in CuPc single layer photovoltaic cell. From the thickness-dependent photovoltaic effects in CuPc/$Cu_{60}$ heterojunction devices, higher power conversion efficiency was obtained in ITO/20nm CuPc/40nm $C_{60}$/Al, which has a thickness ratio (CuPc:$C_{60}$) of 1:2 rather than 1:1 or 1:3. Light intensity on the device was measured by calibrated Si-photodiode and radiometer/photometer of International Light Inc(IL14004).

  • PDF

CuPc를 이용한 유기 광기전 소자의 전기적 특성 (Electrical Properties of Organic Photovoltaic Cell using CuPc)

  • 이호식;박용필
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.612-614
    • /
    • 2008
  • Organic photovoltaic effects were studied in a device structure of ITO/CuPc/Al and ITO/CuPc/$C_{60}$/BCP/Al. A thickness of CuPc layer was varied from 10nm to 50nm, we have obtained that the optimum CuPc layer thickness is around 40nm from the analysis of the current density-voltage characteristics in CuPc single layer photovoltaic cell. From the thickness-dependent photovoltaic effects in CuPc/$C_{60}$ heterojunction devices, higher power conversion efficiency was obtained in ITO/20nm CuPc/40nm $C_{60}$/Al, which has a thickness ratio (CuPc:$C_{60}$) of 1:2 rather than 1:1 or 1:3. Light intensity on the device was measured by calibrated Si-photodiode and radiometer/photometer of International Light Inc(IL14004).

  • PDF

$CuPc/C_{60}$ 구조 유기 반도체에서의 음전극의 종류에 따른 광기전 효과 연구 (Photovoltaic Effects in Organic Semiconductor $CuPc/C_{60}$ depending on Cathodes)

  • 오현석;장경욱;이성일;이준웅;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.181-184
    • /
    • 2004
  • Organic semiconductors have attracted considerable attention due to their interesting physical properties followed by various technological applications in the area of electronics and opto-electronics. It has been a long time since organic solar cells were expected as a low-cost high-energy conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar-cell devices based on copper-phthalocyanine(CuPc) as a donor(D) and fullerene($C_{60}$) as an electron acceptor(A) with doped charge transport layers, and BCP as an exciton blocking layer(EBL). We have measured photovoltaic characteristics of the solar-cell devices using the xenon lamp as a light source.

  • PDF

Develpment of Textile-based Organic Solar Cell

  • 이승우;김영민;전지훈;이영훈;;최덕현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.460-460
    • /
    • 2014
  • Organic photovoltaic cells (OPV) have been extensively studied due to their unique properties such as flexibility, light-weight, easy processability, cost-effectiveness, and being environmental friendly. These advantages make them an attractive candidate for application in various novel fields and promising development with new features. Photovoltaic cell-integrated textiles have greatly attractive features as a power source for the smart textile solutions, and OPV is most ideal form factor due to advantage of flexibility. In this study, we develop a textile-based OPV through various experimental methods and we suggest the direction for the design of the photovoltaic textile. We used a textile electrode and tried to various layouts for textile-based OPV. Finally, we determined the contact area by using Hertzian theory for the calculation of power conversion efficiency (PCE). Based on the results of calculation, the short circuit current density, Isc, was $13.11mA/cm^2$ under AM 1.5condition and the PCE was around 2.5%.

  • PDF

The influence of glycerol doped PEDOT: PSS and Ag buffer layer on power conversion efficiency of semitransparent organic photovoltaic devices

  • Na, Hyung-Il;Kim, Yong-Hoon;Oh, Min-Soek;Han, Jeong-In;Ju, Byeong-Kwon;Park, Sung-Kyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1557-1559
    • /
    • 2009
  • By using optimum doping ratio (10 ~ 20 wt%) of glycerol, the power conversion efficiency (PCE) of organic photovoltaic devices based on poly (3-hexylthiophene) and phenyl-$C_{61}$-butyric acid methyl ester was dramatically increased from 3.23% to 5.03%. Finally, semitransparent organic photovoltaic devices including glycerol doped poly (3,4-ethylenedioxy-thiophene):poly (styrene sulfonate) and thin Ag (< 1 nm) buffer layer typically have shown PCE > 3% with transmittance > 30% in visible ranges.

  • PDF

CuPc/$C_{60}$를 이용한 유기 광기전 소자에서 유기층의 두께에 따른 특성 (Organic Photovoltaic Effects Depending on the Layer Thickness)

  • 한원근
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.535-536
    • /
    • 2005
  • Organic photovoltaic effects were studied in a device structure of ITO/CuPc/Al and ITO/CuPc/$C_{60}$/BCP/Al. A thickness of CuPc layer was varied from 10 nm to 50 nm, we have obtained that the optimum CuPc layer thickness is around 40 nm from the analysis of the current density-voltage characteristics in CuPc single layer photovoltaic cell. From the thickness-dependent photovoltaic effects in CuPc/$C_{60}$ heterojunction devices, higher power conversion efficiency was obtained in ITO/20nm CuPc/40nm $C_{60}$/Al, which has a thickness ratio (CuPc:$C_{60}$) of 1:2 rather than 1:1 or 1:3. Light intensity on the device was measured by calibrated Si-photodiode and radiometer/photometer of International Light Inc(IL14004).

  • PDF

유기물을 이용한 Photovoltaic cell의 광기전력 특성 (Photovoltaic Properties of Organic Photovoltaic cell)

  • 김상걸;이헌돈;정동회;오현석;홍재일;박종욱;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.123-126
    • /
    • 2003
  • Recently, there is a growing concern on the photovoltaic effects using organic materials. This is a phenomena which converts the solar energy into the electrical one. We have fabricated a device structure of $ITO/PEDOT:PSS/CuPc/C_{60}/BCP/AI$. The PEDOT:PSS layer is made by spin coating, and the other organic layers are made by thermal vapor deposition. By measuring the current-voltage characteristics with an illumination of light, we have obtained value of Voc=0.38V, Jsc=$0.5mA/cm^{2}$. And a fill factor and efficiency are about 0.314 and 0.083%, respectively. A 500W xenon lamp(ORIEL) is used for a light source, and the light intensity illuminated into the device was about 10mW.

  • PDF

박막의 조성비율에 따른 유기태양전지의 효율성 연구 (A Study about the Efficiency of Organic Photovoltaic Device as a function of the Material Concentration)

  • 김승주;이동근;박재형;공수철;김원기;류상욱
    • 반도체디스플레이기술학회지
    • /
    • 제8권3호
    • /
    • pp.1-5
    • /
    • 2009
  • In this study, we have shown the power conversion efficiency of organic thin film photovoltaic devices utilizing a conjugated polymer/fullerene bulk-hetero junction structure. We use MDMO-PPV(Poly[2-methoxy-5-(3,7-dimethyloctyloxy -1,4-phenylenevinylene) as an electron donor, PCBM([6,6]-Phenyl C61 butyric acid methyl ester) as an electron accepter, and PEDOT:PSS used as a HTL(Hole Transport Layer). We have fabricated OPV(Organic Photovoltaic) devices as a function of the MDMO-PPV/PCBM concentration from 1:1 to 1:5. The electrical characteristics of the fabricated devices were investigated by means of I-V, P-V, F·F(Fill Factor) and PCE(power conversion efficiency). The power conversion efficiency was gradually increased until 1:4 ratio, also the highest efficiency of 0.4996% was obtained at the ratio.

  • PDF