• Title/Summary/Keyword: Organic Matter Reduction

Search Result 300, Processing Time 0.029 seconds

Effect of Advanced Treatment Process for Residual Chlorine Decay and THM Formation in Water Distribution System (고도처리공정이 관로 내 잔류염소 감소 및 THM 생성에 미치는 영향)

  • Lee, Doo-Jin;Kim, Young-Il;Kim, Sung-Su;Lee, Kyung-Hyuk;Park, Hyun-A
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.419-424
    • /
    • 2007
  • According to increase of consumer's desire for clean tap water, advanced treatment processes include with membrane, ozone, and granular activated carbon(GAC) were introduced. In order to evaluate the effect of advanced treatment processes for residual chlorine decay and trihalomethane(THM) formation in water distribution system, dissolved organic matter(DOC) removal of each advanced treatment process was investigated. The residual chlorine decay and THM formation using bottle tests were also evaluated. $UV_{254}$ removal in all advanced treatment was better than DOC removal. Especially, DOC by ozone treated was removed as 4% in contrast with sand filtered water, but $UV_{254}$ was removed about 17%. This result might be due to convert from hydrophobic DOC to hydrophilic DOC by ozonation. Ozone/GAC process was most effective process for DOC removal. The residual chlorine decay constants in treated water by sand filtration, ozonation, GAC adsorption, and ozone/GAC processes were 0.0230, 0.0307, 0.0117 and 0.0098 $hr^{-1}$, respectively. The sand filtered water was produced 81.8 ${\mu}g/L$ of THM after 190 hours of reaction time, as the treated water by ozone, GAC, and Ozone/GAC was less produced 6.0, 26.2, 30.3% in contrast with sand filtered water, respectively. Consequently, the durability of residual chlorine and reduction of THM formation were improved by advanced treatment processes.

Current Generation from Microbial Fuel Cell Using Stainless Steel Wire as Anode Electrode (스텐철사를 전극으로 이용하는 미생물연료전지의 전류 발생)

  • Jang, Jae Kyung;Kim, Kyung Min;Byun, SungAh;Ryou, Young Sun;Chang, In Seop;Kang, Young Koo;Kim, Young Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.11
    • /
    • pp.753-757
    • /
    • 2014
  • Anode electrode in a microbial fuel cell (MFC) should transfer the receiving electron as well as provide large surface area that can be immobilized microorganisms. Microorganisms' population is one of important factors to improve the current generation and to treat the livestock wastewater by biological treatment. These studies were attempted to investigate if stainless-steel wire skein (SSWS) could be used as anode electrode replacement a graphite felt electrode in microbial fuel cell. For these studies, pretreated livestock wastewater was used diluted to 500 mg/L as COD before use. At this time, the current showed a little difference of about 5% when using each of a SSW and graphite felt (control). There was no significant difference in the current value. The organic removal rate in the microbial fuel cells used graphite felt and SSWS was 82.4% and 88.3%, respectively. The COD removal in the MFC used the SSWS was higher than that of graphite felt. Ammonium nitrogen was showed similar trend in two case all. These results about current generation and organic matter reduction seem possible that SSWS was used to anode electrode. When SSWS is used, the initial investment for system construction is expected to be able to reduce by approximately 1/50.

Advanced Wastewater Treatment on ship's sewage with new MARPOL73/78 ANNEX IV (MARPOL73/78 ANNEX IV의 개정발효에 따른 선박 오수의 고도처리)

  • Park, Sang-Ho;Lim, Jae-Dong;Park, Sung-Jeng;Kim, In-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.91-96
    • /
    • 2007
  • Lab scale experimental study was carried out for SBR process, to investigate the effects of influent ship sewage organic compound removal and Bacillus sp. state on design parameters. This process was able to remove nitrogen and phosphorus as well as organic matter efficiently. More than 95% of chemical oxygen demand(COD) were removed. In addition, about 97% of total nitrogen (T-N) was reduced. The total phosphorus(T-P) reduction averaged 93%. The performance load of SBR process was shown to be $0.095kg{\cdot}TOC/m^3{\cdot}day$. The pH was decreased from 8.1 to 7.0 within 30 min and increased to 7.3 at the end of anoxic stage, and these phenomena were explained. The sludge produced in the SBR process is characterized by low generation rate (about $0.36kg{\cdot}MLSS/kg{\cdot}TOC$) and excellent settleability. The number of Bacillus sp. in the SBR was 24.2%, indicating that Bacillus sp. was a predominant species in the reactor.

  • PDF

Advanced Wastewater Treatment using Sequencing Batch Reactor on ship's sewage (연속 회분식 공정(SBR)을 이용한 선박 오·폐수의 고도처리)

  • Park Sang-Ho;Kim In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.475-480
    • /
    • 2005
  • Lab scale experimental study was carried out for SBR process, to investigate the effects of influent ship sewage organic compound removal and Bacillus sp. state on design parameters. This process was able to remove nitrogen and phosphorus as well as organic matter efficiently. More than $92.0\%$ of chemical oxygen demand(COD) were removed. In addition, about $84.0\%$ of total nitrogen (T-N) was reduced. The total phosphorus(T-P) reduction averaged $93\%$. The performance load of SBR process was shown to be $0.095kg{\cdot}TOC/m3{\cdot}day$. The pH was decreased from 8.1 to 7.0 within 30 min and increased to 7.3 at the end of anoxic stage, and these phenomena were explained. The sludge produced in the SBR process is characterized by low generation rate (about $0.36kg{\cdot}MLSS/kg{\cdot}TOC$) and excellent settleability. The number of Bacillus sp. in the SBR was $24.2\%$, indicating that Bacillus sp. was a predominant species in the reactor.

Effects of Dietary Allium fistulosum L. and Tannic Acid on in vitro Ruminal Fermentation Characteristics and Methane Emission (국내산 파(Allium fistulosum L.)와 탄닌산을 이용한 사료첨가제가 in vitro 반추위 발효성상과 메탄 발생에 미치는 영향)

  • Lee, Shin-Ja;Eom, Jun-Sik;Kim, Hyun-Sang;Kim, Hyeong-Suk;Lee, Sung-Sill
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.4
    • /
    • pp.775-787
    • /
    • 2018
  • This study was conducted to investigate for the natural methane emission inhibitor as a feed additive no adversely effect on rumen fermentation. Five different Control (Wheat barn (0.05 g), MRA(Methane Reduction Additive)-1 (Allium fistulosum L. (0.05 g)), MRA-2 (Sodium Lauryl Sulfate (0.025 g) + Wheat barn (0.025 g) mixed), MRA-3 (Sodium Dodecyl Sulfate (0.025 g) + Wheat barn (0.025 g) mixed), and MRA-4 (Allium fistulosum L. (0.02 g) + Tannic acid (0.02 g) + Wheat barn (0.01 g) mixed) contents were used to perform 3, 6, 9, 12, 24 and 48 h incubation for in vitro fermentation. Ruminal pH values were ranged within normal ruminal microbial fermentation. Dry matter digestibility was not significantly different across the treatments during the whole fermentation time. Also, the result of microbial growth had no adversely effect on during the whole fermentation time. At 24 h, methane emission was significantly lower (P<0.05) than all treatments except to MRA-1. Especially, MRA-4 carbon dioxide emission was significantly lower (P<0.05) than control at 9, 24 and 48 h incubation. In addition MRA-4 propionate concentration was significantly higher (P<0.05) than control at 24 h incubation. The result of RT-PCR Ciliate-associated methanogens were significantly lower (P<0.05) at MRA-1, MRA-3 and MRA-4 than control at 24 h incubation. Based on the present results, MRA-4 could be suggestible methane emission inhibitor as a natural feed additive.

Geochemical Characteristics of Scirpus planiculmis Habitats in Nakdong Estuary, Korea (낙동강 하구 새섬매자기 군락지 지화학 연구)

  • Kim, Yunji;Kang, Jeongwon;Choi, Jae Ung;Park, Chan Mi;Woo, Han Jun
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.125-131
    • /
    • 2019
  • The Nakdong Estuary has experienced hydraulic and topographic changes over the last century, which have had negative effects of habitat loss and fragmentation. The population of Scirpus planiculmis, a major food plant for wintering birds in Nakdong Estuary, has decreased over the last decade. To identify factors that influence S. planiculmis population, 6 short core samples (about 30cm) were collected in June and August, 2018. The sand percentage was over 80% in every samples and the average sediment salinity in June and August were $17.8{\pm}1.12psu$ and $18.4{\pm}1.83psu$, respectively. ${\delta}^{13}C$ of sediment cores varied from -25.4‰ to -22.6‰ which fall within the estuarine particulate organic matters. In cores collected in Eulsuk area, the highest ${\delta}^{13}C$ values were observed at the surface (0~1cm) indicating inputs of marine POM (particulate organic matter) to the Nakdong Estuary. No significant difference between vegetation and non-vegetation stations was observed in every items we investigated which might indicate that the physicochemical environment of vegetation area is almost same as that of non-vegetation area. Therefore, the high sand percentage and sediment salinity of Nakdong Estuary might affect the reduction in S. planiculmis population.

Reduction of ammonia conversion from urea by adding acetohydroxamic acid (Acetohydroxamic acid 이용한 Urea로부터 암모니아 발생 저감 연구)

  • Yun, Gwang Su;Oh, Ha Eun;Jung, Min Woong;Hwang, Okhwa;Yun, Yeo-Myeong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.5-13
    • /
    • 2021
  • Ammonia, primarily originating from urinary urea of the livestock manure, is known to play as a major precursor of fine particulate matter (PM2.5) generation which leads to a decrease in air quality and to harmful effects on public health. The objective of this study was to evaluate the effect of acetohydroxamic acid (AHA) addition on inhibition of ammonia conversion from urea. The experiment was performed at different urea concentration (500-4,000 mg Urea-N/L), AHA concentration (0-4,000 mg AHA/L), pHs (pH 6-10), and temperature (10-35℃). The result showed that the urease inhibition efficiency increased at higher concentration of AHA. However, the specific urease inhibition activity decreased at higher pH, showing 867.1±6.7 Unit/g AHA at pH 6 and 1,167.9±17.4 Unit/g AHA at pH 10, respectively. Decreased urease inhibition efficiency at both AHA and control was observed at higher temperature. This finding indicates that AHA can be used as the urease inhibitor for reducing ammonia emission in the management of livestock manure.

Process development for food waste composting (음식물 쓰레기 퇴비화 공정 개발)

  • Song, Oh-Yong;Jung, Kwang-Yong;Jeong, Jun-Young;Yang, Chang-Ok
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.4
    • /
    • pp.321-326
    • /
    • 1999
  • This study was performed to evaluate the quality of produced compost and to analyse the change of a component during the reduction compost according to the input volume. The volume of pilot scale used in this study was about 300㎥. The pile of 2m width, 20m length and 1.2m height was constructed. Woodchip was used as bulking agent to enhance pore volume of composting bay and to control water content of food waste in starting time. Food waste was turned using a mechanical tumer twice a day. The result are as follows : In these cases of input volume of $2m^3$ and $3.5m^3$, temperature of composting pile was maintained over $60^{\circ}C$ and water content was 43.6% and 47.2%, respectively. It was proved that microorganisms activity was maintained high in each input volume. After operation of step 1 and step 2, pH and organic matter in the final compost were 6.2, 6.6 and 84.3%, 79.6%, respectively. Cation concentration such as $K_2O,$ CaO and NaCl was accumulated in the compost during the composting period. NaCl concentration in the final compost was 4.62%, 4.92%, respectively. Hence, If was recommended that this compost should be applied to others expect agricultural area or mixed with a low concentration other compost. In the steps 1, input volume of $2m^3$, heavy metal concentration of Pb, Cu, Cr, Ni. Cd were 37.82㎎/㎏, 56.87㎎/㎏, 9.8㎎/㎏. 22.21㎎/㎏ and 3.69㎎/㎏, and 44.55㎎/㎏, 95.54㎎/㎏, 12.22㎎/㎏, 24.94㎎/㎏, and 3.86㎎/㎏ in the step 2.

  • PDF

Comparative Studies on Static Windrow and Aerated Static Pile Composting of the Mixtures of Cattle Manure and Rice Hulls -I. Variation of Physico-chemical Parameters (우분뇨와 왕겨 혼합물의 퇴비화에서 정치식과 통기퇴적식의 비교연구 -I. 퇴비재료의 이화학적 환경변화)

  • Sohn, Bo-Kyoon;Hong, Ji-Hyung;Park, Keum-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.403-410
    • /
    • 1996
  • Variations of temperature and physicochemical environment during composting of a mixtures(2:1, v/v) of cattle manure and rice hulls(CMR) in two different composting methods, static windrow(SW) and aerated static pile system(ASPS), were monitored for evaluating the efficient composting system in greenhouse. The pH of composting materials increased to around 8.9 initially, then decreased and stabilized slowly to the neutral value. Composting materials in ASPS showed a rapid stabilization in pH value from the 4th week comparing to the speed in SW. Thermophilic stage for ASPS Lasted at 3 week whereas 6 weeks for WS. Required time to get thermophilic zone in compost was shorter in ASPS than in WS. Reduction rate in total carbon(T-C) was higher in ASPS than in WS. Organic matter was reduced more rapidly in ASPS than in SW showing 9 percent difference after the 6th week. Total nitrogen(T-N) increased while composting process, showing 9 percent after 6th week in WS and 1.8 percent after 7th week in ASPS. C/N ratio was stabilized after 6th week showing 17 and 21 level in WS and ASPS each. Quantity of ash and mineral content increased during composting in both system, showing higher content in ASPS. Composting process by intermittent, aerated static pile system in greenhouse had a significant effect on the reduction of required period for composting.

  • PDF

An Study on Estimating Cargo Handling Equipment Emission in the Port of Incheon (인천항 하역장비 대기오염물질 배출량 산정 연구)

  • Zhao, Ting-Ting;Pham, Thai-Hoang;Lee, Hyang-Sook
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.3
    • /
    • pp.21-38
    • /
    • 2020
  • Currently, in-port emissions are a serious problem in port cities. However, emissions, especially non-greenhouse gases, from the operation of cargo handling equipment (CHE) have received significant attention from scientific circles. This study estimates the amount of emissions from on-land port diesel-powered CHE in the Port of Incheon. With real-time activity data provided by handling equipment operating companies, this research applies an activity-based approach to capture an up-to-date and reliable diesel-powered CHE emissions inventory during 2017. As a result, 105.6 tons of carbon monoxide (CO), 243.2 tons of nitrogen oxide (NOx), 0.005 tons of sulfur oxide (Sox), 22.8 tons of particulate matter (PM), 26.0 tons of volatile organic compounds (VOCs), and 0.2 tons of ammonia (NH3) were released from the landside CHE operation. CO and NOx emissions are the two primary air pollutants from the CHE operation in the Port of Incheon, contributing 87.71% of the total amount of emissions. Cranes, forklifts, tractors, and loaders are the four major sources of pollution in the Port of Incheon, contributing 84.79% of the total in-port CHE emissions. Backward diesel-powered machines equipped in these CHE are identified as a key cause of pollution. Therefore, this estimation emphasizes the significant contribution of diesel CHE to port air pollution and suggests the following green policies should be applied: (1) replacement of old diesel powered CHE by new liquefied natural gas and electric equipment; (2) the use of NOx reduction after-treatment technologies, such as selective catalytic reduction in local ports. In addition, a systematic official national emission inventory preparation method and consecutive annual in-port CHE emission inventories are recommended to compare and evaluate the effectiveness of green policies conducted in the future.