• Title/Summary/Keyword: Organic Matter Reduction

Search Result 300, Processing Time 0.035 seconds

Characteristics of Power Generation and Organic Matter Removal in Air-Cathode MFC with respect to Microbial Concentration (미생물 농도에 따르는 Air-Cathode MFC의 전력발생과 유기물질제거 특성)

  • Kim, Doyoung;Lim, Bongsu;Choi, Chansoo;Kim, Daehyun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.917-922
    • /
    • 2012
  • In order to improve applicability of a microbial fuel cell the laboratory-scaled study has been performed by adopting an air-cathode MFC system with high concentrated anaerobic slugies in this study. The concentrations of microbes are grouped into three types, Type A (TS 1.7%), Type B (TS 1.1%) and Type C (TS 0.51%). The open circuit voltage $(V_{oc})$ characteristics showed that the medium microbes concentration of 1.10% (Type B) kept a constant voltage of 1.0 V for 150 hours, which showed the longest time among three types (Type A and Type C). The discharge charge curves for a closed circuit with $500 \Omega$ also showed that Type B generated a stable discharge voltage of 0.8 V for a longer time as in the open circuit voltage case. This could be explained by the relatively large amount of the attached microbes. Under the $V_{oc}$condition the COD removal efficiency of Type B was found to be low for a long time, but those of Type A and C were found to be high for a short period of time. Therefore, the suspended microbes could decrease the coulombic efficiency. It was concluded that the high $V_{oc}$ was caused by low COD and the $V_{oc}$ became low after the COD removal. The COD reduction resulted in an unstable and low working voltage. From the polarization characteristics Type A was found to show the highest power density of $193\;mW/m^2$ with a fill factor of 0.127 due to the relatively high remaining COD even after the MFC reaction.

More about Taxonomic Sufficiency: A Case Study using Polychaete Communities in a Subtropical Bay Moderately Affected by Urban Sewage

  • Muniz Pablo;Pires-Vanin Ana M. S.
    • Ocean Science Journal
    • /
    • v.40 no.3
    • /
    • pp.127-143
    • /
    • 2005
  • The taxonomic sufficiency approach has been proposed as a surrogate for the typical analysis of species-abundance data, especially in conditions involving prominent pollution gradients. Here, we evaluate the use of taxonomic sufficiency with infralittoral macrobenthic data derived from samples taken in a moderate polluted subtropical environment in southeastern Brazil, analysing five taxonomic levels and including two functional levels throughout polychaete feeding guilds and trophic groups. The data were collected seasonally at nine stations and studied for two abundance data series (0.5 and 1.0 mm sieve mesh-size). The results showed a similar ordination pattern between the two sieve mesh-size, but with the 0.5 mm sieve data a different pattern was observed during austral summer. A slight loss of information was detected using genus, family, polychaete species and their feeding guilds as taxonomic/functional units. These results together with those of the cost! benefit ratio, suggested that the family level seemed to be sufficient to detect the impact caused by moderate pollution in this shallow-water, subtropical environment. In additional, through the use of feeding guilds, similar patterns are obtained. Correlation analysis showed that chlorophyll a, total organic matter, zinc, and chromium sediment content were the variables that best explained the biological pattern observed and not always the best correlation coefficient occurring at the species level. The feeding guild approach seems to be useful and generates interpretable results similar to those obtained with the species level of the whole macroinfauna. The results showed an important cost reduction in the sample processing, suggesting that it is possible to adopt a coarser taxonomic level monitoring program even in species-rich communities.

Effect of Soil Texture and Tillage Method on Rice Yield and Methane Emission during Rice Cultivation in Paddy Soil

  • Cho, Hyeon-Suk;Seo, Myung-Chul;Kim, Jun-Hwan;Sang, Wan-gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.564-571
    • /
    • 2016
  • As the amount of rice straw collected increases, green manure crops are used to provide the needed organic matter. However, as green manure crops generate methane in the process of decomposition, we tested with different tillage depths in order to reduce the emission. The atmosphere temperature of the chamber was $25{\sim}40^{\circ}C$ during the examination of methane and soil temperature was $2{\sim}10^{\circ}C$ lower than air temperature. The redox potential (Eh) of the soil drastically fell right before irrigated transplanting and showed -300~-400 mV during the cultivating period of rice (7~106 days after transplant). When hairy vetch was incorporated to soil and the field was not irrigated, the generation of methane did not occur from 12 to 4 days before transplanting rice and started after irrigation. Regarding the pattern of methane generation during the cultivation of rice, methane was generated 7 days after transplanting, reached the pinnacle at by 63~74 days after transplanting, rapidly decreased after 86~94 days past transplanting and stopped after 106 days past transplanting. When tested by different soil types, methane emission gradually increased in loam and clay loam during early transplant, whereas it sharply increased in sandy loam. The total amount of methane emitted was highest in sandy loam, followed by loam and clay loam. In all three soil types, methane emission significantly reduced when tillage depth was 20 cm compared to 10 cm. The rice growths and yield were not affected by tillage depth. Therefore, reduction of methane emission could be achieved when application hairy vetch to the soil with tillage depth of 20 cm in paddy soil.

Characteristics of Anthropogenic Soil Formed from Paddy near the River

  • Sonn, Yeon-Kyu;Zhang, Yong-Seon;Hyun, Byung-Keun;Kim, Keun-Tae;Lee, Chang-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.434-439
    • /
    • 2016
  • Anthropogenic soil in cropland is formed in the process of subsoil reversal and the refill of soil into cropland. However, there was little information on the chemical properties within soil profiles in anthropogenic soil under rice paddy near the river. In this study, we investigated the chemical properties within soil profiles in the anthropogenic soil located at 4 sites in Gumi, Kimhae, Chungju, and Euiseong to compare with the natural paddy soil near the river. Among particle sizes, the sand content decreased under soil profiles but the silt and clay contents increased compared to the natural paddy soil in soil profiles. Organic matter content in topsoil of anthropogenic soil was lower than in that of natural soil, which was shown the contrary tendency within soil profiles. Also, the soil pH, available $P_2O_5$, and exchangeable cations were higher in anthropogenic soil compared to natural paddy soil at topsoil, which was maintained these tendency into soil depth. Nutrients may be equally distributed in anthropogenic soil during the process of refill in paddy soil near the river. This results indicated that anthropogenic soil would contribute to carbon sequestration, the mitigation of compaction, and reduction of fertilizer application in paddy soil. Therefore, characteristics of anthropogenic soil can be used for the soil management in cropland.

A Study on Combustion and Emission Characteristics of Diesel Generator Fuelled with Coffee Ground Pyrolysis Oil (커피박 열분해유를 연료로 사용하는 디젤 발전기의 연소 및 배출물 특성에 관한 연구)

  • PARK, JUNHA;LEE, SEOKHWAN;KANG, KERNYONG;LEE, JINWOOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.567-577
    • /
    • 2019
  • Due to the depletion of fossil fuels and environmental pollution, demand for alternative energy is gradually increasing. Among the various methods, a method to convert biomass into alternative fuel has been proposed. The bio-fuel obtained from biomass through pyrolysis process is called pyrolysis oil (PO) or bio-oil. Because PO is difficult to use directly in conventional engines due to its poor fuel properties, various methods have been proposed to upgrade pyrolysis-oil. The simplest approach is to mix it with conventional fossil fuels. However, due to their different polarity of PO and fossil fuel, direct mixing is impossible. To resolve this problem, emulsification of two fuels with a proper surfactant was proposed, but it costs additional time and cost. Alternatively, the use of alcohol fuels as an organic solvent significantly improve the fuel properties such as fuel stability, calorific value and viscosity. In this study, blends of diesel, n-butanol, and coffee ground pyrolysis oil (CGPO) which is one of the promising PO, was applied to diesel generator. Combustion and emissions characteristics of blended fuels were investigated under the entire load range. Experimental results show that ignition delay is similar to that of diesel at high load. Although, hydrocarbon and carbon monoxide emissions are comparable to diesel, significant reduction of nitrogen oxides and particulate matter emissions were observed.

Mineralogical and Geochemical Characteristics of Ancient Field Soil in Jeongdongri as Ceramic Raw Materials of the Baekje Kingdom (백제 와전재료로서 정동리 고토양의 광물 및 지구화학적 특성)

  • Jang, Sung-Yoon;Lee, Chan-Hee
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.543-553
    • /
    • 2010
  • This study was focused on the mineralogical and geochemical characteristics of field soil of the Baekje Kingdom from K wongbawigol site in Jeongdongri, Buyeo and whether the bricks from Songsanri Tombs and Muryung's Royal Tomb were made of soil from this site. Soil samples show the similar size fraction as a silt loam and acidic soil, whereas some samples have the enrichment of organic matter, P and S. Also, they have similar geochemical behavior of elements and similar mineral phases consisting of quartz, plagioclase, orthoclase, vermiculite, mica and kaolinite. The enrichment of iron oxide is found in some soil layer, including the iron oxide mottling and precipitation along plant roots and they are attributed to repeat oxidation and reduction environments due to flooding and drainage of field soil. It's anthropogenic alteration by human activity. Especially, it is assumed that the concentration of the iron oxides found in bricks from Muryung's Royal Tomb and Songsanri Tombs is the additional evidence that soil in this study is probably the raw materials of those bricks.

Analysis of Livestock Resources on NPS Pollution Characteristics by Rainfall Simulation (인공강우를 이용한 축산 자원화물의 비점오염 배출 특성 분석)

  • Won, Chul-Hee;Choi, Yong-Hun;Shin, Min-Hwan;Seo, Ji-Yeon;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.67-74
    • /
    • 2011
  • This research focused on the investigation of runoff and nonpoint sources (NPS) pollution characteristics from small soil box plots treated by livestock waste composts. An indoor rainfall simulation was performed over the plots for 60 minutes. Simulated rainfall intensities were 32.4, 43.2, 50.3 and 57.1 mm/hr respectively. Slope of soil box plots was $10^{\circ}$ and $20^{\circ}$, respectively. Rainfall simulation replicated 5 times and the experiment was conducted every four days five times. As the slope of soil box increased, NPS pollution loads increased. And as rainfall intensity was increased from 32.4 to 57.1 mm/hr, NPS pollution loads gradually increased, too. Discharge of NPS pollution loads was the largest in the first simulation and thereafter decreased gradually. Discharged BOD load to the total applied load from $10^{\circ}$ plots, ranged 0.2 to 0.7 %, was 8.4 to 50.0 % lower than slope $20^{\circ}$ plots. When the application rate increased twice, the increase of pollution load was between 1.7~5.7 times. Analysis of Pearson's correlation coefficient showed that organic matter content in pig compost and NPS pollution loads were correlated well. While under liquid compost application, the correlation coefficients between them were not good. It was concluded that application of livestock resources need to consider long-term weather forecast and if necessary, NPS reduction measures must be preceded in order to reduce NPS pollution discharge.

Effect of Crop Rotation System on Soil Chemical Properties and Ginseng Root Rot after Harvesting Ginseng (인삼 연작지에서 윤작물 작부체계가 토양화학성 및 인삼뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Lee, Seung Ho;Park, Kyung Hoon;Jang, In Bok;Jin, Mei Lan;Seo, Moon Won
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.244-251
    • /
    • 2017
  • Background: The application of crop rotation systems may reduce the occurrence of soil-borne diseases by releasing allelochemicals and by subsequent microbial decomposition. Methods and Results: For reduction of ginseng root rot by the crop rotation system, after harvesting 6-year-old ginseng, fresh ginseng was grown along with continuous cultivation of sweet potato, peanut, and bellflower. Growth of 2-year-old ginseng was significantly inhibited in the continuous cultivation than in the first cultivation. Sweet potato, peanut and bellflower cultivations assisted in obtaining normal yields of ginseng in the first year after the harvest of 6-year-old ginseng. Salt concentration, potassium and sodium contents were gradually decreased, and, organic matter was gradually increased through cirp rotation. Phosphate, calcium and magnesium contents were not altered. The density of the root rot fungus was gradually decreased by the increase in crop rotation; however it was decreased distinctly in the first year compared to the second and third year. The severity of root rot disease tended to decrease gradually by the increase of crop rotation. Conclusions: Short-term crop rotation for three years promoted the growth of ginseng, however root rot infection was not inhibited significantly, although it was somewhat effective in lowering the density of the root rot pathogen.

Geochemical characteristics of sediment, pore water, and headspace gas in the Ulleung Basin (울릉분지 퇴적물, 공극수 및 공기층 가스의 지화학적 특징)

  • Kim, Ji-Hoon;Park, Myong-Ho;Ryu, Byong-Jae;Lee, Young-Joo;Jin, Young-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.373-376
    • /
    • 2006
  • 본 연구의 목적은 동해 울릉분지의 제4기 후기 퇴적물 내의 유기물, 공극수와 메탄의 특징 및 상호작용을 규명하는데 있다. 연구지역에서 채취한 코어퇴적물을 원소 분석한 결과 C/N 및 C/S 비(wt. %)는 퇴적물 내 유기물이 주로 해양조류 기원을 가지고, 일반적인 해양 또는 정체 환경에서 퇴적되어Tdam을 지시한다. 그러나 Rock-Eval 열분석 결과는 유기물 기원이 육상식물(Type III)이고, 열적 성숙단계가 미성숙단계임을 보여준다. 이러한 원소분석과 열분석간의 상반된 결과는 유기물이 침강하는 동안 또는 퇴적 후 이루어진 강한 산화작용에 기인한 것으로 추정된다. 퇴적물 내 공극수의 황산염 농도가 퇴적물의 심도가 증가할수록 감소하며, 감소하는 경향은 크게 두 가지 (적선성, concave down)로 나누어진다. 이는 모든 코어에서 황산엽 환원작용이 일어나고 있음을 지시한다. 또한 직선선의 황산엽농도 구배는 무산소 메탄 산화작용(AMO)의 전형적인 특징이다. 황산염 농도의 수직적 구배를 이용하여 SMI(sulfate-methane interface) 심도를 계산하면, 남부울릉분지의 코어 (03GHP-01, 03GHP-02; <3.5mbsf)가 북부울릉분지 코어(01GHP-05, 01GHP-07, 03GHP-03, 03GHP-04, 03GHP-05; > 6mbsf)보다 낮은 값을 갖는다. 위와 같은 SMI 심도차는 메탄의 상부 분산량과 밀접한 관련있는 것으로 추정된다. 메탄가스의 탄소 안정동위원소 $({\delta}^{13}C)$ 분석값들은 -83.5%o에서 -69.5%o의 범위를 가지고 있고, 이산화탄소 환원작용($CO)_2$ reduction)에 의한 생물 (biogenic) 기원임을 지시한다.

  • PDF

Effects of lactic acid bacteria and molasses on fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro ruminal fermentation of rice straw silage

  • Zhao, Jie;Dong, Zhihao;Li, Junfeng;Chen, Lei;Bai, Yunfeng;Jia, Yushan;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.783-791
    • /
    • 2019
  • Objective: This study was to evaluate the fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro gas production of rice straw ensiled with lactic acid bacteria and molasses. Methods: Fresh rice straw was ensiled in 1-L laboratory silos with no additive control (C), Lactobacillus plantarum (L), molasses (M) and molasses+Lactobacillus plantarum (ML) for 6, 15, 30, and 60 days. After storage, the silages were subjected to microbial and chemical analyses as well as the further in vitro fermentation trial. Results: All additives increased lactic acid concentration, and reduced pH, dry matter (DM) loss and structural carbohydrate content relative to the control (p<0.05). The highest organic acid and residual sugar contents and lignocellulose reduction were observed in ML silage. L silage had the highest V-score with 88.10 followed by ML silage. L and ML silage improved in vitro DM digestibility as compared with other treatments, while in vitro neutral detergent fibre degradability (IVNDFD) was increased in M and ML silage (p<0.05). M silage significantly (p<0.05) increased propionic acid (PA) content and decreased butyric acid content and acetic acid/PA as well as 72-h cumulative gas production. Conclusion: The application of ML was effective for improving both the fermentation quality and in vitro digestibility of rice straw silage. Inclusion with molasses to rice straw could reduce in vitro ruminal gas production.