• Title/Summary/Keyword: Organic Matter Reduction

Search Result 300, Processing Time 0.031 seconds

Correlation between Characteristics of SOD in Coastal Sewage and Predictive Factor (연안 저질 SOD의 특성과 유발 영향인자에 대한 상관관계)

  • Kim, Beom-Geun;Khirul, Md Akhte;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.596-604
    • /
    • 2019
  • This study conducted a sediment culture experiment to investigate the effects of sediment oxygen demand (SOD) and environmental factors on sediment and water quality. We installed a leaching tank in the laboratory, cultured it for 20 days, and analyzed the relationship between P and Fe in the sediment. As a result, the dissolved oxygen of the water layer decreased with time, while the oxidation-reduction potential of the sediment progressed in the negative direction to form an anaerobic reducing environment. The SOD was measured to be 0.05 mg/g at the initial stage of cultivation and increased to 0.09 mg/g on the 20th day, indicating the tendency of increasing consumption of oxygen by the sediment. The change is likely to have caused by oxygen consumption from biological-SOD, which is the decomposition of organic matter accumulated on the sediment surface due to the increase of chl-a, and chemical-SOD consumed when the metal-reducing product produced by the reduction reaction is reoxidized. The correlation between SOD and causality for sediment-extracted sediments was positive for Ex-P and Org-P and negative for Fe-P. The analysis of the microbial community in the sediment on the 20th day showed that anaerobic iron-reducing bacteria (FeRB) were the dominant species. Therefore, when the phosphate bonded to the iron oxide is separated by the reduction reaction, the phosphate is eluted into the water to increase the primary productivity. The reduced substance is reoxidized and contributes to the oxygen consumption of the sediment. The results of this study would be useful as the reference information to improve oxygen resin.

A Comparison of Ammonia and Preformed Protein as a Source of Nitrogen for Microbial Growth in the Rumen of Sheep Given Oaten Chaff

  • Kanjanapruthipong, J.;Leng, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.4
    • /
    • pp.351-362
    • /
    • 1998
  • Microbial growth efficiency in the rumen was studied in sheep given hourly, 31.25 g oaten chaff with either 0.31 and 0.88 g urea or 1.88 and 5.63 g casein (exp. 1) and 33.33 g oaten chaff with 1.04 casein or 0.3, 0.6 and 0.9 g urea or the mixture of the casein and urea (exp. 2). Concentrations of ruminal fluid ammonia increased with increasing nitrogenous supplements. Organic matter digestibility in sacco in the rumen was not different irrespective of N sources. Isoacids and valeric acid increased with increasing ingested casein but decreased with increasing urea intake. Peptide and amino acid pools in ruminal fluid increased with increasing ammonia concentrations (exp. 2) suggesting that proteolytic activity and transportation of peptides and amino acids across microbial membrane of rumen microbes may be regulated by the metabolite mechanism (intracellular amino acids and $NH_4{^+}$, respectively). Densities of total viable and cellulolytic bacteria in ruminal fluid increased with increasing ammonia levels but that of small Entodinia decreased. The density of fungal sporangia growth on oat leaf blades decreased with increasing ammonia concentrations but appeared to remain constant in the presence of casein. Efficiency of net microbial cell synthesis was 15-28% higher when ammonia concentrations increased from 100 to above 200 mg N/l regardless of N sources. In conclusion, supplementation of preformed protein had no effect on rumen digestion and microbial growth efficiency. This could not be accounted for its effect on ruminal fluid ammonia. Increased microbial growth efficiency with increasing ammonia levels may be due to a reduction in the turnover of microbial cells within the rumen.

Effects of Feed Particle Size and Feed Form on Growth Performance, Nutrient Metabolizability and Intestinal Morphology in Broiler Chickens

  • Zang, J.J.;Piao, X.S.;Huang, D.S.;Wang, J.J.;Ma, X.;Ma, Yongxi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.107-112
    • /
    • 2009
  • This study was conducted to investigate the effect of feed particle size and feed form on growth performance, nutrient metabolizability and intestinal morphology in broiler chickens. This experiment was a 2${\times}$2 factorial arrangement including two feed particle sizes (fine and coarse) and two feed forms (mash and pellet). A total of two hundred and eighty eight day-old male Arbor Acre broilers were used in this six week experiment. Birds were randomly allotted to four dietary treatments with six replicates per treatment and twelve birds per replicate. The results showed that pelleting diets resulted in greater ADG (p<0.01), greater ADFI (p<0.01) and lower feed to gain ratio (F/G) (p<0.05) during starter, grower and overall period. Also, pelleting improved both apparent metabolizable energy (AME) (p<0.01) and the apparent metabolizability of crude protein (p<0.05) and organic matter (p<0.05) regardless of the phase. Reduction of feed particle size enhanced AME (p<0.05) during d 19 to 21. Increased villus height (p<0.05) and crypt depth ratio (p< 0.05) within duodenum, jejunum, and ileum were observed in birds fed the pellet diet compared with those given the mash diet. In conclusion, results indicated that feed pellets might enhance performance by improving nutrient metabolizability and digestive tract development.

디젤로 오염된 토양의 효과적인 Bioventing

  • 왕성환;오영진;문원재;박태주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.66-69
    • /
    • 2002
  • In this work, cost effective venting is considered by comparing flow rates of 5$m\ell$/min, 10$m\ell$/min, and 20$m\ell$/min. Studies were performed on a soil artificially contaminated with diesel oil (the initial TPH(Total Petroleum Hydrocarbon) concentration of 7098mg/kg), and nutrient condition was C:N:P rate of 100:10:1. The soil has a sandy texture with pH of 6.8, 2.16 ~2.38% organic matter, a total porosity of 47~52% and field capacity 16.2~ 17.2%. The column experiments was made of glass column of 60cm length and 10cm I.D. at controlled temperature of 2$0^{\circ}C$($\pm$2.5$^{\circ}C$). The efficiency of continuous flow rate of 5, 10 and 20$m\ell$/min resulted in separately 61.3%, 58.1%, and 55% reduction of initial TPH concentration(7098mg/kg). Hydrocarbon utilizing microbial count and dehydrogenase activity in air flow of 5$m\ell$/min were higher than those of the others. The first order degradation rate of n-alkanes ranging from C10 to C28 was higher than that of pristane and phytane as isoprenoids. The $C_{17}$/pristane and $C_{18}$phytane ratios for monitoring the degree of biodegradation were useful only during the early stages of oil degradation. Degradation contributed from about 89% to 93% of TPH removal. Volatilization loss of diesel oil in contaminated soil was about 7% to 11%, which was significantly small compared to degradation.n.

  • PDF

A Study on the Reduction of COD, Total Phosphorus and Nitrogen in Wastewater by Electrolysis and HClO Treatment (전기화학처리와 HClO 처리를 통한 폐수중 COD, 총인, 총질소의 저감에 대한 연구)

  • Kim, Tae Kyeong;Song, Ju Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.436-442
    • /
    • 2017
  • This study was conducted to develop a wastewater treatment system to remove organic matter, nitrate nitrogen, and phosphate ion in synthetic wastewater. COD was removed almost 100% by the oxidation reaction of HClO and nitrate nitrogen was reduced to ammonia by electrolysis treatment, but ammonia was reoxidized into nitrate nitrogen by HClO treatment. Ammonia was removed almost 100% by heating evaporation and no ammonia was reoxidized into nitrate by HClO treatment. Phosphate ion could be removed by precipitation treatment by forming metal complex according to pH. Through electrolysis treatment and HClO treatment, removal efficiencies of COD 99.5%, nitrogen 97.3% and phosphorus 91.5% were obtained.

Numerical Simulation for the Prediction of PAHs in Jinhae Bay using EMT-3D Model (EMT-3D 모델을 이용한 진해만 PAHs의 거동 예측 시뮬레이션)

  • Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • The behavior prediction of PAHs in Jinhae Bay using a three-dimensional ecological model(EMT-3D) was examined. A three-dimensional ecological model(EMT-3D) was applied to the simulation of PAHs behaviors in Jinhae Bay of Korea. The computed results of simulation were in good agreement with the observed values. The result of sensitivity analysis showed that photolysis coefficient and extinction coefficient were important factors in the variation of dissolved PAHs, and POC partition coefficient was important factor in the variation of PAHs in particulate organic matter. In the case of PAHs in phytoplankton, bioconcentration factor of plankton was the most significant and the most effective in all. In simulations of 30%, 50% and 80% reduction in total loads of PAHs, the concentrations of dissolved PAHs were shown to be lower than 24 ng/L, 20 ng/L and 16 ng/L, respectively.

Characteristics of Hazardous Air Pollutant Level in Road Tunnels in Seoul (서울시 터널의 유해대기오염물질 농도변화 특성 분석)

  • Park, Jin-A;Lee, Won-Young;Kim, Jin-A;Kim, Ik-Su;Kim, Hyun-Su;Jeong, Jong-Heup;Yun, Jung-Seop;Jung, Kweon;Eom, Seog-Won
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.6
    • /
    • pp.541-549
    • /
    • 2013
  • Objectives: We analyzed the characteristics of hazardous air pollutants (HAPs) in road tunnels in Seoul. Methods: Particle matter ($PM_{10}$), elemental carbon (EC), organic carbon (OC), and 16 species of polycyclic aromatic hydrocarbons (PAHs) in two road tunnels (NS tunnel and HJ tunnel) were sampled and analyzed from 2007 to 2011. Results: Levels of $PM_{10}$ and carbon ingredients which were mainly emitted from diesel-fueled vehicles showed a declining tendency in both road tunnels. PAHs levels in HJ were declining slightly while PAHs levels in the NS tunnel fluctuated considerably and showed an increasing tendency. Conclusions: These results suggested that the abatement project of diesel vehicle emissions by the Seoul metropolitan government from 2007 has had an impact on the reduction of DVE into the air, though there exist many things to consider for analyses.

Carbon stocks and its variations with topography in an intact lowland mixed dipterocarp forest in Brunei

  • Lee, Sohye;Lee, Dongho;Yoon, Tae Kyung;Salim, Kamariah Abu;Han, Saerom;Yun, Hyeon Min;Yoon, Mihae;Kim, Eunji;Lee, Woo-Kyun;Davies, Stuart James;Son, Yowhan
    • Journal of Ecology and Environment
    • /
    • v.38 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • Tropical forests play a critical role in mitigating climate change, and therefore, an accurate and precise estimation of tropical forest carbon (C) is needed. However, there are many uncertainties associated with C stock estimation in a tropical forest, mainly due to its large variations in biomass. Hence, we quantified C stocks in an intact lowland mixed dipterocarp forest (MDF) in Brunei, and investigated variations in biomass and topography. Tree, deadwood, and soil C stocks were estimated by using the allometric equation method, the line intersect method, and the sampling method, respectively. Understory vegetation and litter were also sampled. We then analyzed spatial variations in tree and deadwood biomass in relation to topography. The total C stock was 321.4 Mg C $ha^{-1}$, and living biomass, dead organic matter, and soil C stocks accounted for 67%, 11%, and 23%, respectively, of the total. The results reveal that there was a relatively high C stock, even compared to other tropical forests, and that there was no significant relationship between biomass and topography. Our results provide useful reference data and a greater understanding of biomass variations in lowland MDFs, which could be used for greenhouse gas emission-reduction projects.

Physico-Chemical Characteristics of Visibility Impairment in a National Park Area (국립공원 지역 시정장애 현상의 물리.화학적 특성)

  • Kim, Kyung-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.4
    • /
    • pp.325-338
    • /
    • 2009
  • National parks provide recreation, health, and science to human being. The provision of beautiful landscape view of the national park improves an economic and social phase of a nation. However, visibility impairment frequently occurred in the national park area of Gyeongju. The purpose of this study is to investigate the physical and the chemical characteristics of visibility reduction observed at the national park area of Gyeongju. Optical, chemical, meteorological characteristics and scenic monitoring were performed at the visibility monitoring station of Gyeongju University located at the Seoak section of Gyeongju national park from April 28 to May 9, 2008. Light extinction, light scattering, and light absorption coefficients were continuously measured using a transmissometer, a nephelometer, and an aethalometer, respectively. In order to investigate the impact of aerosol chemistry on visibility impairment, size-resolved aerosols were collected at intervals of 2-hour (from 8 A.M. to 6 P.M.) and 14-hour (from 6 P.M. to 8 A.M.) interval each sampling day. The average light extinction coefficient and the average visual range were measured to be $270{\pm}135\;Mm^{-1}$ and $14.5{\pm}6.3\;km$ during the intensive monitoring period, respectively. It was revealed that sulfate particle was the largest contributor to the light extinction under hazy condition. Organic mass accounted for about 26% of the average light extinction. The mass extinction efficiencies for $PM_{1.0}$, $PM_{2.5}$, and $PM_{10}$ were estimated to be 9.0, 4.7, and $2.7\;m^2\;g^{-1}$ under the consideration of water growth function of hygroscopic aerosols, respectively.

Water quality management by bio-purification of bivalve, Mytilus galloprovincialis, in Masan Bay (이매패의 생물정화 기작을 이용한 마산만의 수질개선방안)

  • Hong, Sok Jin;Eom, Ki Hyuk;Jang, Ju Hyung;Park, Jong Su;Kim, Dong Myung;Kwon, Jung No
    • Journal of Wetlands Research
    • /
    • v.9 no.2
    • /
    • pp.71-84
    • /
    • 2007
  • Masan Bay is a representative semi-closed bay acted as a sedimentation reservoir with a slow current velocity and a poor water circulation in Korea. The pollutants from terrestrial sources into the Masan Bay have apparently environmental pollution problems, such as eutrophication, red tied, and hypoxia. In this study, An ecological modeling work was performed to estimate the material circulation including the growth of bivalve in ecosystem. Furthermore, the effect of water purification was calculated by filter feeding bivalve to particulate organic matter just like COD and phytoplankton. And Water quality management strategy by bio-purification of bivalve is derived through selection of location, quantification of bivalve aquaculture farm. The results showed that the optimum location for bivalve farming is where phytoplankton accumulation by physical processes is maximized and the optimum density and area of bivalve are 35 individuals $m^{-3}$ and ca. 500 hectare, respectively. When assuming conditions for the optimum growth of bivalve, COD could decrease by up to 18% even without other reduction of pollution loads.

  • PDF