• Title/Summary/Keyword: Organic Light Emitting Diodes (OLED)

Search Result 354, Processing Time 0.036 seconds

High efficiency deep blue and pure white phosphorescent organic light emitting diodes

  • Yook, Kyoung-Soo;Jeon, Soon-Ok;Joo, Chul-Woong;Kim, Myung-Seop;Choi, Hong-Seok;Lee, Seok-Jong;Han, Chang-Wook;Tak, Yoon-Heung;Lee, Nam-Yang;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.486-488
    • /
    • 2009
  • High efficiency deep blue and pure white phosphorescent organic light emitting diodes were developed using a new deep blue phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine) iridium (FCNIr). A high quantum efficiency of 9.1 % with a color coordinate of (0.15, 0.16) at 1,000 cd/$m^2$ was obtained in the deep blue device and a high quantum efficiency of 15.2 % with a color coordinate (0.30, 0.32) was obtained in the pure white organic light-emitting diodes. The quantum efficiency of the pure white device is the best quantum efficiency value reported in the pure white device up to now.

  • PDF

Theoretical Modeling of the Internal Power Flow and Absorption Loss of the Air Mode Based on the Proposed Poynting Vector Analysis in Top-emitting Organic Light-emitting Diodes

  • Kim, Jiyong;Kim, Jungho;Kim, Kyoung-Youm
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1663-1674
    • /
    • 2018
  • We propose the Poynting vector analysis of the air mode in a top-emitting organic light-emitting diode (OLED) by combining the transfer matrix method and dipole source term. The spatial profiles of the time-averaged optical power flow of the air mode are calculated inside and outside the multilayer structure of the OLED with respect to the thickness of the semi-transparent top cathode and capping layer (CPL). We elucidate how the micro-cavity effect controlled by the thickness variation of the semi-transparent top cathode or CPL affects the internal optical power and absorption loss inside the OLED multilayer and the external optical power coupled into the air. When the calculated absorption loss and external power obtained by the proposed Poynting vector and currently-used point dipole models are compared, two calculation results are identical, which demonstrates the validity of the two models.

Effect of Hole-Transporting Layer and Solvent in Solution Processed Highly-Efficient Small Molecule Organic Light-Emitting Diodes

  • Jo, Min-Jun;Hwang, Won-Tae;Chae, Hee-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.250-250
    • /
    • 2012
  • Organic light-emitting diodes (OLED) and polymer light emitting diodes (PLED) have been regarded as the candidate for the next generation light source and flat panel display. Currently, the most common OLED industrial fabrication technology used in producing real products utilizes a fine shadow mask during the thermal evaporation of small molecule materials. However, due to high potential including low cost, easy process and scalability, various researches about solution process are progressed. Since polymer has some disadvantages such as short lifetime and difficulty of purifying, small molecule OLED (SMOLED) can be a good alternative. In this work, we have demonstrated high efficient solution-processed OLED with small molecule. We use CBP (4,4'-N,N'-dicarbazolebiphenyl) as a host doped with green dye (Ir(ppy)3 (fac-tris(2-phenyl pyridine) iridium)). PBD (2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole) and TPD (N,N'diphenyl-N,N'-Bis (3-methylphenyl)-[1,1-biphenyl]-4,4'-diamine) are employed as an electron transport material and a hole transport material. And TPBi (2,2',2''-(1,3,5-phenylene) tris (1-phenyl-1H-benzimidazole)) is used as an hole blocking layer for proper hole and electron balance. With adding evaporated TPBi layer, the current efficiency was very improved. Among various parameters, we observed the property of OLED device by changing the thickness of hole transporting layer and solvent which can dissolve organic material. We could make small molecule OLED device with finding proper conditions.

  • PDF

Improved Performance of Organic Light-Emitting Diodes Using Novel Hole-transporting Materials

  • Kim, Young-Kook;Hwang, Seok-Hwan;Kwak, Yoon-Hyun;Lee, Chang-Ho;Yi, Jeoung-In;Lee, Jong-Hyuk;Kim, Sung-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.758-761
    • /
    • 2009
  • The electroluminescent devices with the phenylnaphthyldiamine HTMs as the hole-transporting layer were more efficient than that with the biphenyldiamine HTM 1. Particularly, the life-time of the device IV using HTM 2 is about two times longer than that of the reference device III with HTM 1 within the measured current density, indicating more effective recombination at the emitting layer of device IV.

  • PDF

Tandem Organic Light-Emitting Devices Having Increased Power Efficiency

  • Liao, Liang-Sheng;Klubek, Kevin P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1015-1018
    • /
    • 2008
  • Tandem organic light-emitting diodes (OLEDs) do not always improve power efficiency over their conventional OLED counterparts. When a tandem OLED utilizes optimized EL units, increased power efficiency can only be achieved if the intermediate connector in the device has excellent charge injection capability.

  • PDF

Influence of Electrode and Thickness of Organic Layer to the Emission Spectra in Microcavity Organic Light Emitting Diodes (마이크로캐비티 OLED의 전극과 유기물층 두께가 발광 스펙트럼에 미치는 영향)

  • Kim, Chang-Kyo;Han, Ga-Ram;Kim, Il-Yeong;Hong, Chin-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.11
    • /
    • pp.1183-1189
    • /
    • 2012
  • Organic light-emitting diodes (OLEDs) using microcavity effect have attracted great attention because they can reduce the width of emission spectra from organic materials, and enhance brightness from the same material. We demonstrate the simulation results of the radiation properties from top-emitting organic light-emitting diodes (TE-OLEDs) with microcavity structures based on the general electromagnetic theory. Organic materials such as N,N'-di (naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) ($Alq_3$) as emitting and electron transporting layer are used to form the OLEDs. The organic materials were sandwiched between anode such as Ni or Au and cathode such as Al, Ag, or Al:Ag. The devices were characterized with electroluminescence phenomenon. We confirmed that the simulation results are consistent with experimental results.

Highly Efficient Green Phosphorescent Organic Light Emitting Diodes

  • Lee, Se-Hyung;Park, Hyung-Dol;Kang, Jae-Wook;Kim, Hyong-Jun;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.496-498
    • /
    • 2008
  • We have developed green phosphorescent organic light-emitting diodes (OLEDs) with high quantum efficiency. Wide-energy-gap material, 1,1-bis[(di-4-tolylamino) phenyl]cyclohexane (TAPC), with high triplet energy level was used as a hole transporting layer. Electrophosphorescent devices fabricated using TAPC as a hole-transporting layer and N,N'-dicarbazolyl-4,4'-biphenyl (CBP) doped with fac-tris(2-phenylpyridine) iridium [Ir(ppy)3] as the emitting layer showed the maximum external quantum efficiency ($\eta_{ext}$) of 19.8 %, which is much higher than the devices adopting 4,4'-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl (NPB) (${\eta}B_{ext}=14.6%$) as a hole transporting layer.

  • PDF

Improved stability of organic light-emitting diodes with lithium-quinolate doped electron transport layer

  • Choi, Sung-Hoon;Kim, Sang-Dae;Han, Kyu-Il;Lee, Se-Hee;Park, Eun-Jung;Kum, Tae-Il;Jung, Young-Kwan;Lee, Seok-Jong;Lee, Nam-Yang
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.771-774
    • /
    • 2009
  • The Improved stability of organic light emitting diodes (OLEDs) containing lithium-quinolate (Liq) as the ETL doping material is investigated. The lifetime could be improved by threefold using the Liq-doped ETL structure. The improvement was attributed to the Liq-doped ETL, which improved hole-electron balance and has a good electrical stability. Additionally, when the Liq doped device was combined with an Mg/Al cathode, the OLED produced a longer lifetime than other device.

  • PDF

Correlation between optimized thicknesses of capping layer and thin metal electrode for efficient top-emitting blue organic light-emitting diodes

  • Hyunsu Cho;Chul Woong Joo;Byoung-Hwa Kwon;Chan-mo Kang;Sukyung Choi;Jin Wook Sin
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1056-1064
    • /
    • 2023
  • The optical properties of the materials composing organic light-emitting diodes (OLEDs) are considered when designing the optical structure of OLEDs. Optical design is related to the optical properties, such as the efficiency, emission spectra, and color coordinates of OLED devices because of the microcavity effect in top-emitting OLEDs. In this study, the properties of top-emitting blue OLEDs were optimized by adjusting the thicknesses of the thin metal layer and capping layer (CPL). Deep blue emission was achieved in an OLED structure with a second cavity length, even when the transmittance of the thin metal layer was high. The thin metal film thickness ranges applicable to OLEDs with a second microcavity structure are wide. Instead, the thickness of the thin metal layer determines the optimized thickness of the CPL for high efficiency. A thinner metal layer means that higher efficiency can be obtained in OLED devices with a second microcavity structure. In addition, OLEDs with a thinner metal layer showed less color change as a function of the viewing angle.

Effects of dielectric capping layer in the phosphorescent top emitting organic light emitting diodes

  • Kim, Sei-Yong;Leem, Dong-Seok;Lee, Jae-Hyun;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.499-502
    • /
    • 2008
  • Effects of a dielectric capping layer on the luminous characteristics of top emitting organic light emitting diodes (TOLEDs) have been analyzed using a classical electromagnetic theory. Special attention was given to the influence of the cavity length on the effectiveness of the capping layer. The luminance characteristics of the TOLEDs influenced by the combined effects of the cavity length and the capping layer thickness. Furthermore, these combined effects also modify the emission spectrum and pattern of the TOLEDs, which result in the improvement of total luminance of the device, but no significant change in the device out-coupling efficiency.

  • PDF