• 제목/요약/키워드: Organic Crystal

검색결과 526건 처리시간 0.029초

Al2O3 High Dense Single Layer Gas Barrier by Neutral Beam Assisted Sputtering (NBAS) Process

  • 장윤성;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.157-157
    • /
    • 2015
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}g/m^2day$. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2day$) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study NBAS process was introduced to deposit enhanced film density single gas barrier layer with a low WVTR. Fig. 1. shows a schematic illustration of the NBAS apparatus. The NBAS process was used for the $Al_2O_3$ nano-crystal structure films deposition, as shown in Fig. 1. The NBAS system is based on the conventional RF magnetron sputtering and it has the electron cyclotron resonance (ECR) plasma source and metal reflector. $Ar^+$ ion in the ECR plasma can be accelerated into the plasma sheath between the plasma and metal reflector, which are then neutralized mainly by Auger neutralization. The neutral beam energy is controlled by the metal reflector bias. The controllable neutral beam energy can continuously change crystalline structures from an amorphous phase to nanocrystal phase of various grain sizes. The $Al_2O_3$ films can be high film density by controllable Auger neutral beam energy. we developed $Al_2O_3$ high dense barrier layer using NBAS process. We can verified that NBAS process effect can lead to formation of high density nano-crystal structure barrier layer. As a result, Fig. 2. shows that the NBAS processed $Al_2O_3$ high dense barrier layer shows excellent WVTR property as a under $2{\times}10^{-5}g/m^2day$ in the single barrier layer of 100nm thickness. Therefore, the NBAS processed $Al_2O_3$ high dense barrier layer is very suitable in the high efficiency OLED application.

  • PDF

A Study on Electro-optical Characteristics of the UV Aligned FFS Cell on the Organic Layer

  • Han, Jeong-Min;Ok, Chul-Ho;Hwang, Jeoung-Yeon;Kim, Byoung-Yong;Kang, Dong-Hun;Kim, Jong-Hwan;Kim, Young-Hwan;Han, Jin-Woo;Lee, Sang-Keuk;Seo, Dae-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제8권3호
    • /
    • pp.135-138
    • /
    • 2007
  • In this study, we investigated the electro-optical (EO) characteristic of fringe-field switching (FFS) mode cell by the two kinds of ultraviolet (UV) alignment method on the organic thin film (polyimide: PI). The suitable organic layers for FFS cell and the aligning capabilities of nematic liquid crystal (NLC) using the in-situ photoalignment method were studied; Disclination is observed after conventional photoalignment method for 1h, and in-situ photoalignment method for 1h. Monodomain alignment of the NLC can be observed via insitu photo alignment method for 2 h and 3 h. It is considered that NLC alignment is due to photo-depolymerization of the polymer with oblique non-polarized UV irradiation on PI surface. An unstable V-T curve of UV-aligned FFS-LCD with conventional photoalignment method can be achieved. However, a stable V-T curve of UV-aligned FFS-LCD with in-situ photoalignment method (1 h), and V-T curve of UV-aligned FFS-LCD with in-situ photo alignment method was much stable comparing with that of other UV-aligned FFSLCD's. As a result, more stable EO performance of UV-aligned FFS-LCD with in-situ photoalignment method for 3h is obtained than that of the other UV-aligned FFS-LCD's.

Self-Assembly of Vanadium Borophosphate Cluster Anions: Synthesis and Structures of (NH4)(C2H10N2)5.5[Cu(C2H8N2)2]3[V2P2BO12]6·17H2O and (NH4)(C2H10N2)3.5[Cu(C2H8N2)2]5[V2P2BO12]6·18H2O

  • Jung, Kyung-Na;Cho, Yoon-Suk;Yun, Ho-Seop;Do, Jung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권8호
    • /
    • pp.1185-1189
    • /
    • 2005
  • Two new copper vanadium borophosphate compounds, $(NH_4)(C_2H_{10}N_2)_{5.5}[Cu(C_2H_8N_2)_2]_3[V_2P_2BO_{12}]_6{\cdot}17H_2O,\;Cu-VBPO1\;and\;(NH_4)(C_2H_{10}N_2)_{3.5}[Cu(C_2H_8N_2)_2]_5[V_2P_2BO_{12}]_6{\cdot}18H_2O$, Cu-VBPO2 have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, thermogravimetric analysis, IR spectroscopy, and elemental analysis. The structure of Cu-VBPO1 contains a layer anion, {$[Cu(C_2H_8N_2)_2]_3[V_2P_2BO_{12}]_6$}$^{12-}$, whereas Cu-VBPO2 has an open framework anion, {$[Cu(C_2H_8N_2)_2]_5[V_2P_2BO_{12}]_6$}$^{8-}$. Crystal Data: $(NH_4)(C_2H_{10}N_2)_{5.5}[Cu(C_2H_8N_2)_2]_3[V_2P_2BO_{12}]_6{\cdot}17H_2O$, monoclinic, space group I2/m (no. 12), $\alpha$ = 15.809(1) $\AA$, b = 31.107(2) $\AA$, c = 12.9343(8) $\AA$, $\beta$ = 104.325(1)$^{\circ}$, Z = 2; $(NH_4)(C_2H_{10}N_2)_{3.5}[Cu(C_2H_8N_2)_2]_5[V_2P_2BO_{12}]_6{\cdot}18H_2O$, tetragonal, space group $P4_2$/mnm (no.136), $\alpha$ = 26.832(1) $\AA$, c = 18.021(1) $\AA$, Z = 4.

돈분뇨 부숙과정에서 Struvite 결정체 형성에 따른 퇴비특성 변화 (Changes of Compost Quality by the Formation of Struvite Crystal During the Composting of Swine Manure)

  • 이진의;라창식
    • Journal of Animal Science and Technology
    • /
    • 제51권3호
    • /
    • pp.249-254
    • /
    • 2009
  • 돈분뇨 부숙과정에서의 Mg원 첨가에 따른 MAP 크리스탈 결정체 형성과 부숙과정에 미치는 영향을 조사하였다. 돈분뇨내 수용성인산 기준 1.2M비로 Mg원을 첨가하여 부숙시킨 경우와 첨가하지 않고 부숙한 경우를 비교하여 실험한 결과 Mg원 첨가에 의한 부숙과정에서의 유기물분해 저해 현상은 관찰되지 않았다. Mg원을 첨가한 경우 분뇨 내 $NH_4$$PO_4$가 함께 반응하여 MAP 크리스탈 결정체를 형성함에 따라 $NH_4$-N의 함량이 낮아졌으며 이는 부숙과정에서의 암모니아 가스 형태로의 질소소실을 낮추어주는 결과가 됨을 알 수 있었다. 수용성인의 함량 또한 Mg원을 첨가한 경우에 낮아져 최종 부숙퇴비의 총인중 수용성인의 비율이 감소함을 알 수 있었다. 따라서 부숙과정에서의 Mg원 첨가는 최종 부숙퇴비의 비료성분 보존과 완효도 증가효과가 있음을 알 수 있었다. 최종퇴비의 X-Ray Diffraction 시험결과 부숙과정에서 MAP 결정체가 형성됨을 알 수 있었으며 2.8 mm 이하의 입자크기에서 형성된 결정체가 많음을 알 수 있었다. 또한 입자크기별 질소와 인 성분 분포율을 비교한 결과 2.8 mm 이하의 입자크기에 질소와 인성분의 2/3 이상이 분포해 있음을 알 수 있었다.

Crystallization of Poly(vinylidene fluoride)-SiO2 Hybrid Composites Prepared by a Sol-gel Process

  • Cho, Jae Whan;Sul, Kyun Il
    • Fibers and Polymers
    • /
    • 제2권3호
    • /
    • pp.135-140
    • /
    • 2001
  • Organic-inorganic hybrid composites consisting of poly(vinylidene fluoride) (PVDF) and SiO$_2$ were prepared through a sol-gel process and the crystallization behavior of PVDF in the presence of $SiO_2$ networks was investigated by spectroscopic, thermal and x-ray diffraction measurements. The hybrid composites obtained were relatively transparent, and brittleness increased with increasing content of tetraethoxysilane (TEOS). It was regarded from FT-lR and DSC thermal analyses that at least a certain interaction existed between PVDF molecules and the $SiO_2$ networks. X-ray diffraction measurements showed that all of the hybrid samples had a crystal structure of PVDF ${\gamma}$-phase. Fresh gel prepared from the sol-gel reaction showed a very weak x-ray diffraction peak near 2$\theta$=$21^{\circ}$ due to PVDF crystallization, and Intensity increased grade-ally with time after gelation. The crystallization behavior of PVDF was strongly affected by the amount of $SiO_2$ networks. That is, $SiO_2$ content directly influenced preference and disturbance fur crystallization. In polymer-rich hybrids, $SiO_2$ networks had a favorable effect on the extent of PVDF crystallization. In particular, the maximum portent crystallinity of PVDF occurred at the content of 3.7 wt% $SiO_2$ and was higher than that of pure PVDF. However. beyond about 10 wt% $SiO_2$, the crystallization of PVDF was strongly confined.

  • PDF

Highly Crystalline 2,6,9,10-Tetrakis((4-hexylphenyl)ethynyl)anthracene for Efficient Solution-Processed Field-effect Transistors

  • Hur, Jung-A;Shin, Ji-Cheol;Lee, Tae-Wan;Kim, Kyung-Hwan;Cho, Min-Ju;Choi, Dong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1653-1658
    • /
    • 2012
  • A new anthracene-containing conjugated molecule was synthesized through the Sonogashira coupling and reduction reactions. 1-Ethynyl-4-hexylbenzene was coupled to 2,6-bis((4-hexylphenyl) ethynyl)anthracene-9,10-dione through a reduction reaction to generate 2,6,9,10-tetrakis((4-hexylphenyl)ethynyl) anthracene. The semiconducting properties were evaluated in an organic thin film transistor (OTFT) and a single-crystal field-effect transistor (SC-FET). The OTFT showed a mobility of around 0.13 $cm^2\;V^{-1}\;s^{-1}$ ($I_{ON}/I_{OFF}$ > $10^6$), whereas the SC-FET showed a mobility of 1.00-1.35 $cm^2\;V^{-1}\;s^{-1}$, which is much higher than that of the OTFT. Owing to the high photoluminescence quantum yield of 2,6,9,10-tetrakis((4-hexylphenyl)ethynyl) anthracene, we could observe a significant increase in drain current under irradiation with visible light (${\lambda}$ = 538 nm, 12.5 ${\mu}W/cm^2$).

Chemical Vapor Deposition of β-LiGaO2 Films on Si(100) Using a Novel Single Precursor

  • Sung, Myung M.;Kim, Chang G.;Kim, Yun-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권4호
    • /
    • pp.480-484
    • /
    • 2004
  • $LiGaO_2$ films have been grown on Si (100) substrates using a new single precursor $[Li(OCH_2CH_2OCH_3)_2-Ga(CH_3)_2]_2$ under high vacuum conditions $(5{\times}10^{-6}Torr)$. The $[Li(OCH_2CH_2OCH_3)_2Ga(CH_3)_2]_2$ was synthe-sized and characterized by using spectroscopic methods and single-crystal X-ray diffraction analysis. The chemical composition, crystalline structure, and morphology of the deposited films were investigated by X-ray photoelectron spectroscopy, X-ray diffraction, and scanning electron microscopy. The results show that polycrystalline $LiGaO_2$ films preferentially oriented in the [010] direction can be deposited on Si (100) at 500-550$^{\circ}C$ by metal organic chemical vapor deposition (MOCVD). The single precursor $[LiOCH_2CH_2OCH_3)_2-Ga(CH_3)_2]_2$ has been found suitable for chemical vapor deposition of $LiGaO_2$ thin films on Si substrates.

Fabrication of GaN Ring Structure with Broad-band Emission Using MOCVD and Wet Etching Techniques

  • Sim, Young-Chul;Lim, Seung-Hyuk;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.243.1-243.1
    • /
    • 2016
  • Recently, many groups have attempted to fabricate 3-dimensional (3D) structures of GaN such as pyramids, rods, stripes and annulars. Since quantum structures on non-polar and semi-polar planes of 3D structures have less influence of internal electric filed, multi quantum wells (MQWs) formed on those planes have high quantum efficiency. Especially, pyramidal and annular structures consist of various crystal planes with different emission wavelength, providing a possibillity of phosphor-free white light emtting diodes (WLEDs).[1] However, it still has problem to obtain high color rendering index (CRI) number because of narrow-band emission and poor indium composition caused by the formation of few number of facets during metal-organic chemical vapor deposition growth.[2] If we can fabricate 3D structure having more various facets, we can make broad-band emittied WLEDs and improve CRI number. In this study, we suggest a simple method to fabricate 3D structures having various facet and containing high indium composition by means of a combination of metal-organic chemical vapor deposition and wet chemical etching techniques.

  • PDF

Low Temperature PECVD for SiOx Thin Film Encapsulation

  • Ahn, Hyung June;Yong, Sang Heon;Kim, Sun Jung;Lee, Changmin;Chae, Heeyeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.198.1-198.1
    • /
    • 2016
  • Organic light-emitting diode (OLED) displays have promising potential to replace liquid crystal displays (LCDs) due to their advantages of low power consumption, fast response time, broad viewing angle and flexibility. Organic light emitting materials are vulnerable to moisture and oxygen, so inorganic thin films are required for barrier substrates and encapsulations.[1-2]. In this work, the silicon-based inorganic thin films are deposited on plastic substrates by plasma-enhanced chemical vapor deposition (PECVD) at low temperature. It is necessary to deposit thin film at low temperature. Because the heat gives damage to flexible plastic substrates. As one of the transparent diffusion barrier materials, silicon oxides have been investigated. $SiO_x$ have less toxic, so it is one of the more widely examined materials as a diffusion barrier in addition to the dielectric materials in solid-state electronics [3-4]. The $SiO_x$ thin films are deposited by a PECVD process in low temperature below $100^{\circ}C$. Water vapor transmission rate (WVTR) was determined by a calcium resistance test, and the rate less than $10.^{-2}g/m^2{\cdot}day$ was achieved. And then, flexibility of the film was also evaluated.

  • PDF

Femtosecond laser induced photo-expansion of organic thin films

  • 채상민;이명수;최지연;이현휘;김효정
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.120.2-120.2
    • /
    • 2015
  • We propose a novel direct writing technique with a femtosecond laser enabling selective modification of not only the morphology of conducting polymer thin films but also the orientation and alignment of the polymer crystal. Surface relief gratings resulting from photoexpansion on P3HT:PCBM and PEDOT:PSS thin films were fabricated by femtosecond laser direct writing. The photoexpansion was induced at laser fluence below the ablation threshold of the thin film. The morphology (size and shape) of photoexpansion could be quantitatively controlled by laser writing parameters such as focused beam size, writing speed, and laser fluence. GIWAX results showed that face-on P3HT crystals were largely increased in the photoexpansion in comparison with pristine region of the thin film. In addition, the face-on P3HTs in the photoexpansion were aligned with their orientation along the polarization of the laser. The micro-RAMAN spectra confirmed that neither chemical composition change nor the polymer chain breaking was observable after femtosecond laser irradiation. We believe that this laser direct writing technique opens a new door to the fabrication of more efficient OPVs via non-contact, toxic-free approach.

  • PDF