• Title/Summary/Keyword: Organic Crystal

Search Result 528, Processing Time 0.031 seconds

The thermal stabilization characteristics of electrolyte membrane in high temperature electrolysis[HTE] (고온 수전해 전해질 막의 열안정화 특성 고찰)

  • Choi, Ho-Sang;Son, Hyo-Seok;Sim, Kyu-Sung;Hwang, Gab-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.2
    • /
    • pp.150-158
    • /
    • 2005
  • Added ratio of 8YSZ powder and organic compounds (solvent, plasticizer, dispersant, binder) properly. It manufactured electrolysis membrane by wet process that make slurry and dry process that do not use organic compounds. In the case of wet process, harmony combination and method of organic compound are an importance element in slurry manufacture. This slurry did calcine at temperature of 140$^{\circ}C$ in Furnace and manufactured electrolyte disk by Dry pressing method. Like this, manufacturing disk sintered at temperature of $1300^{\circ}C,\;1400^{\circ},\;1500^{\circ}C$ in Furnace and completed electrolysis membrane. Confirmed change of crystal structure and decision form through analysis of density, SEM, XRD according to change of sintering temperature, and considered relation with ion conductivity.

Temperature Analysis for Optimizing the Configuration of the Linear Cell

  • Choi Jong-Wook;Kim Sung-Cho;Kim Jeong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1089-1097
    • /
    • 2006
  • The market demand of display devices is drastically increasing in the information technology age. The research on OLED (Organic Light Emitting Diodes) display with the luminescence in itself is being more paid attention than LCD (Liquid Crystal display) with the light source from the back. The vapor deposition process is most essential in manufacturing OLED display. The temperature distribution of the linear cell in this process is closely related to securing the uniformity of organic materials on the substrate. This work analyzed the temperature distribution depending on the intervals between the crucible and the heating band as well as on the amount of the heat flux from the heating band. Moreover, the roles of the water jacket and the configuration of the cover within the linear cell were examined through the temperature analysis for six configurations of the linear cell. Under the above temperature analysis, the variations in the intervals and the amount of the heat flux were considered to have an effect on building the uniform temperature distribution within the crucible. It is predicted that the water jacket and the adequate configuration of the cover will prevent the blowout and clogging phenomena, respectively. The results can be used as the fundamental data for designing the optimal linear cell.

White-light-emitting Organic Electroluminescent Device Based On Incomplete Energy Transfer

  • Song, Tae-Joon;Ko, Myung-Soo;Lee, Sung-Soo;Cho, Sung-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.701-705
    • /
    • 2002
  • In order to realize full color display, two approaches were used. The first method is the patterning of red, green, and blue emitters using a selective deposition. Another approach is based on a white-emitting diode, from which the three primary colors could be obtained by micro-patterned color filters. White-light-emitting organic light emitting devices (OLEDs) are attracting much attention recently due to potential applications such as backlights in liquid crystal displays (LCDs) or other illumination purposes. In order for the white OLEDs to be used as backlights in LCDs, the light emission should be bright and have Commission Internationale d'Eclairage (CIE) chromaticity coordinates of (0.33, 0.33). For obtaining white emission from OLEDs, different colors should be mixed with proper balances even though there are a few different methods for mixing colors. In this study, we will report a white organic electroluminescent device based on an incomplete energy transfer. In which the blue and green emission come from the same layer via incomplete energy transfer.

  • PDF

Temperature Analysis for the Linear Cell in the Vapor Deposition Process

  • Choi Jongwook;Kim Sungcho;Kim Jeongsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1329-1337
    • /
    • 2005
  • The OLED (Organic Light Emitting Diodes) display recently used for the information indicating device has many advantages over the LCD (Liquid Crystal Display), and its demand will be increased highly. The linear cell should be designed carefully considering the uniformity of thin film on the substrate. Its design needs to compute the temperature field analytically because the uniformity for the thin film thickness depends on the temperature distribution of the source (organic material). In the present study, the design of the linear cell will be modified or improved on the basis of the temperature profiles obtained for the simplified linear cell. The temperature distributions are numerically calculated through the STAR-CD program, and the grids are generated by means of the ICEM CFD program. As the results of the simplified linear cell, the temperature deviation was shown in the parabolic form among the both ends and the center of the source. In order to reduce the temperature deviation, the configuration of the rectangular ends of the crucible was modified to the circular type. In consequence, the uniform temperature is maintained in the range of about 90 percent length of the source. It is expected that the present methods and results on the temperature analysis can be very useful to manufacture the vapor deposition device.

White-Light-Emitting Materials for Organic Electroluminescent Devices

  • Kim, Duck-Young;Kwon, Oh-Kwan;Kwon, Hyuck-Joo;Kim, Young-Kwan;Sohn, Byoung-Chung;Ha, Yun-Kyoung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.7-11
    • /
    • 2001
  • White emission is important for applying organic EL devices to full-color flat panel display and backlight for liquid crystal display. In order to obtain white emission, the use of a light-emitting material which shows the white emission by itself is advantageous for these applications because of its high reliability and productivity. A chelate-metal complex such as zinc bis(2-(2-hydroxyphenyl) benzothiazolate) ($Zn(BTZ)_{2}$ was known to emit white light with a broad electroluminescence. In this study, the electroluminescent characteristics of $Be(BTZ)_{2}$ and $Mg(BTZ)_{2}$, as well as $Zn(BTS)_2$ were investigated using organic electroluminescent devices with the structure of ITO/TPD/ $Be(BTZ)_{2}$, $Mg(BTZ)_{2}$, or $Zn(BTZ)_{2}/Al$. It was found that the device containing $Be(BTZ)_{2}$ showed the highest power efficiency.

Synthesis and Characteristics of the Organic Layered Structure Material of $(C_4H_9NH_3)_2Fe_xPb_1-xCl_4$

  • Jeong, Su Jin;In, Ri Ju;O, Eung Ju;Jo, Ung In;Kim, Gyu Hong;Yo, Cheol Hyeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.7
    • /
    • pp.703-708
    • /
    • 2001
  • K2NiF4-type organic-based perovskites of the (C4H9NH3)2FexPb1-xCl4 (x=0.00, 0.25, 0.50, and 0.75) system have been synthesized using a low-temperatu re solution method under a flowing argon gas. When stoichiometric butylamine, iron chloride, and lead chloride are mixed, a yellow solution are obtained from slow cooling of 90 to -10 $^{\circ}C.$ The final product is a plate-like yellow crystal. The X-ray crystallographic analysis has been carried out using XRD in the range of $5^{\circ}{\leq}$ 2${\theta}$ ${\leq}80^{\circ}.$ The local symmetry around the absorbing Pb atom of the samples has been determined by the EXAFS spectroscopic study. The crystals assign to orthorhombic system by the XRD analysis. The FT-IR spectra are analyzed in the range of 600 to 3300 cm-1 . DSC and TGA are measured to detect thermal stability between 30 and 300 $^{\circ}C.$ Two endothermic peaks are detected in all samples. The electrical conductivity has been measured using the four-probes technique for the (C4H9NH3)2FexPb1-xCl4 system in 300-460 K. Photoluminescence phenomenon was also investigated at room-temperature.

Modified Graphene Oxide-Based Adsorbents Toward Hybrid Membranes for Organic Dye Removal Application

  • Thi Sinh, Vo;Khin Moe, Lwin;Sun, Choi;Kyunghoon, Kim
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.402-411
    • /
    • 2022
  • In this study, the channels-contained hybrid membranes have been fabricated through the incorporation of glass fibers and GO sheets (GO/glass fibers, GG), or a mixture of chitosan/GO (CS/GO/glass fibers, CGG), as hybrid membranes using in organic dye removal. The material properties are well investigated the terms in the morphological, chemical, crystal, and thermal characterizations for verifying interactions in their formed structure. These hybrid membranes have been fitted well in pseudo-second order and Langmuir models that are associated with chemical adsorption and a monolayer approach, respectively. The highest adsorption ability of methylene blue and methyl orange reached 59.40 mg/g and 229.07 mg/g (GG); and 287.47 mg/g and 252.91 mg/g (CGG), which is more enhanced than that of previous GO-based other adsorbents. Moreover, the dye separation on these membranes could be favorable to superb sealing and trapping dye molecules from water instead of only the dye connection occurring on their surface, regarding the physically sieving effect. The membranes can also be reused within two and three adsorbing-desorbing cycles on the GG and CGG ones, respectively. These membranes can become future adsorbents to be applied for wastewater treatment due to their structural features.

Photocatalytic Degradation of Organic Dyes using CdSe-Mn-C60 Nanocomposites

  • Jiulong Li;Jeong Won Ko;Weon Bae Ko
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.181-187
    • /
    • 2022
  • CdSe-Mn nanocomposites were synthesized using a microwave method with sodium sulfite (Na2SO3), selenium (Se), cadmium sulfate octahydrate (3CdSO4·8H2O), ammonia solution (NH3·H2O), and manganese (II) sulfate monohydrate (MnSO4·H2O). We obtained CdSe-Mn-C60 nanocomposites by calcining CdSe-Mn nanocomposites and fullerene (C60) in an electric furnace at 700 ℃ for 2 h. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy were used to characterize the crystal structures, lattice vibrations, and surface morphologies of the products, respectively. The photocatalytic activities of the CdSe-Mn-C60 nanocomposites were investigated based on the photocatalytic degradations of organic dyes such as BG, MB, MO, and RhB under ultraviolet (UV) irradiation at 254 nm. UV-visible spectrophotometry was used to confirm the degradation process.

A Study on the Weight Loss Treatment and Characteristics of Nylon 6 Fiber (나일론 6 섬유의 감량가공 및 특성 연구)

  • Lim, Sung Chan;Lee, Hyun Woo;Lee, Hyun Jae;Won, Jong Sung;Jin, Da Young;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.27 no.3
    • /
    • pp.175-183
    • /
    • 2015
  • Weight loss treatment of a fiber leads an improvement of its handle and drape properties. Hydrolysis of a fiber is commonly known as a method to reduce its weight of 5-40%. Most of the studies on the weight loss treatment are mainly based on polyester fibers and there has been almost no study on the weight reduction of nylon fibers. In this study, however, in order to develop a use of nylon 6 fiber for the industrial applications such as toothbrush, underwear, carpet and more, weight loss treatment of a nylon 6 fiber was carried out. Under various treatment conditions, morphological analysis were done to observe the change in the structure of the surface and analysis. From the observation of formic acid treated nylon 6 fiber, there were many etched and deformed morphologies. Thermal and crystalline properties were analyzed to find the changes in the crystal structure caused by the weight loss treatment. There were little differences in the crystalline properties of nylon 6 fiber by formic acid treatment. Tensile strength of nylon 6 fiber decreases with acid concentration. The FITR peak intensity of the amide bond decreases with formic acid concentration.

Effects of Blended TIPS-pentacene:ph-BTBT-10 Organic Semiconductors on the Photoresponse Characteristics of Organic Field-effect Transistors (TIPS-pentacene:ph-BTBT-10 혼합 유기반도체가 유기전계효과트랜지스터 광반응 특성에 미치는 영향)

  • Chae Min Park;Eun Kwang Lee
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.13-22
    • /
    • 2024
  • In this study, blended 6,13-Bis(triisopropylsilylethynyl)pentacene (TP):2-Decyl-7-phenyl[1]benzothieno[3,2-b][1] benzothiophene (BT):Poly styrene (PS) TFT at different ratios were explored for their potential application as light absorption sensors. Due to the mixing of BT, both off current reduction and on/off ratio improvement were achieved at the same time. In particular, the TP:BT:PS (1:0.25:1 w/w) sample showed excellent light absorption characteristics, which proved that it is possible to manufacture a high-performance light absorption device. Through analysis of the crystal structure and electrical properties of the various mixing ratios, it was confirmed that the TP:BT:PS (1:0.25:1 w/w) sample was optimal. The results of this study outline the expected effects of this innovation not only for the development of light absorption devices but also for the development of mixed organic semiconductor (OSC) optoelectronic systems. Through this study, the potential to create a multipurpose platform that overcomes the limitations of using a single OSC and the potential to fabricate a high-performance OSC TFT with a fine-tuned optical response were confirmed.