• Title/Summary/Keyword: Organic Contaminants

Search Result 383, Processing Time 0.021 seconds

Tertiary Treatment of Municipal Wastewater Using Unsaturated Sandy Soil (불포화 사질토양을 이용한 도시하수의 3차 처리)

  • Kim, Seung-Hyun;Chung, Jong-Bae;Ha, Hyun-Soo;Prasher, Shiv O.
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.111-117
    • /
    • 2003
  • Treatment of secondary effluent was investigated using sandy soil as a possible alternative to the tertiary treatment of municipal wastewater. Secondary effluent was applied with three different flow rates to the surface of pilot scaled lysimeters, which were filled with sandy soil. Some of the lysimeters were covered with osd, while others were kept bare in order to investigate the role of plantation on the treatment. The concentration changes in COD and nitrogen were measured along the unsaturated soil depth. The same set of experiment as with the secondary effluent was performed using tap water to investigate the dissolution of the contaminants from the soil. from the results it was found that when sandy soil was used for tertiary treatment of municipal wastewater COD removal efficiency reached about 70% regardless of the application rate. The soil depth needed to obtain such efficiency increased along with the application rate, which was about 60 cm at the application rate of 50 L/day. Results also showed that nitrification occurred rapidly. The process was completed in soil depth of first $10{\sim}20\;cm$. Nitrogen removal efficiency was as low as about 20% regardless of the application rate. Some supplementary means should be considered to improve the efficiency. Sod on the soil surface had no significant influence on the contaminant treatment but was helpful to keep the infiltration rate undiminished. Finally, the organic soil was found to release significant amount of contaminants when it was in contact with soil water.

Effect of Trans-Membrane Pressure on Reversible and Irreversible Fouling Formation of Ceramic Membrane (막간차압이 세라믹막의 가역막오염과 비가역막오염 형성에 미치는 영향)

  • Lee, Heewon;An, Kwangho;Choi, Juneseok;Kim, Seogku;Oh, Hyunje
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.9
    • /
    • pp.637-643
    • /
    • 2012
  • This study was carried out to investigate how reversible and irreversible fouling were distributed in the filtration using ceramic membrane of 300 kDa pore size for secondary effluent of wastewater. It was performed by calculating fouling as numerical method for diverse TMPs and measured F-EEM and SEC for raw water, treated water and backwashed water. Water quality was also checked to know whether treated water quality was stable or not. The results showed that reversible fouling formation was increased when lower TMP was applied and it is caused by protein like organic matters having higher molecular weights. The secondary wastewater effluent had diverse molecular weight materials, especially contaminants lower than 0.5 kDa and bigger than 12 kDa. Decreasing TMP induced contaminants above 12 kDa and below 1 kDa to become reversible fouling.

Effect of Soil Micro-environments on the Remediation Efficiency of Contaminated Soil and Groundwater: Review and Case Study (토양지하수 미세환경과 오염정화효율과의 상관성 고찰)

  • Shim, Moo Joon;Yang, Jung-Seok;Lee, Mi Jung;Lee, Giehyeon;Park, Jae Seon;Kim, Guk Jin;Min, Sang Yoon;Kim, Joo Young;Choi, Min Joo;Kim, Min Chan;Lim, Jong Hwan;Kwon, Man Jae
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.34-45
    • /
    • 2014
  • A variety of physical, chemical, and microbiological techniques have been developed to deal with soil and groundwater contamination. However, in the presence of the large portion of soil micro-environments, contaminant rebound and/or tailing have been frequently reported. Case study of total petroleum hydrocarbons (TPH) removal by full-scale land farming showed that contaminant rebound and/or tailing occurred in 9 out of total 21 cases and subsequently resulted in problems of a long term operation to satisfy TPH guidelines of contaminated soil and groundwater. The main cause of contaminant rebound and tailing is considered to be the strong interactions between contaminants and micro-environments including micro-particles, micro-pores, and organic matter. Thus, this study reviewed the effects of soil micro-environments of soil and groundwater on the removal efficiency for both heavy metals and petroleum contaminants. In addition, the various methods of sampling, analysis, and assessment of soil micro-environments were evaluated. Thorough understanding of the effects of soil micro-environments on contaminant removal will be essential to achieve a cost-effective and efficient solution to contaminated sites.

A Study on the Cleanliness Evaluation Methods for the Selection of Alternative Cleaning Agents (대체 세정제의 선정을 위한 세정성 평가방법 연구)

  • Shin, Jin-Ho;Lee, Jae-Hoon;Bae, Jae-Heum;Lee, Min-Jae;Hwang, In-Gook
    • Clean Technology
    • /
    • v.15 no.2
    • /
    • pp.81-90
    • /
    • 2009
  • In this study various cleaning evaluation methods were tested and comparatively evaluated to help cleaning industry. In order to select alternative cleaning agents objectively and systematically, various cleaning evaluation methods such as gravimetric, optically simulated electron emission (OSEE), contact angle, and analytical instrument methods were employed for cleaning contaminants such as flux, solder and grease. The analytical instruments used in this work were Fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-VIS) and high performance liquid chromatography (HPLC). The gravimetric method was able to measure cleaning efficiencies easily and simply, but it was not easy to analyze them precisely because of its limitation in the gravimetric measurement. However, the OSEE technique was able to measure quickly and precisely the clean ability of cleaning agents in comparison with the gravimetric method. The contact angle method was found to be necessary for taking special precaution in its application to the cleaning evaluation due to possible formation of tiny organic film on the substrate surface which might be generated from contaminants and cleaning agents. In case of precision analysis that cannot be done by gravimetric method, fine analytical instruments such as UV-VIS, FTIR and HPLC could be used in analyzing trace amount of flux, solder and grease quantitatively, which were extracted from the surface by special solvents.

Trichloroethylene Removal Using Sulfate Reducing Bacteria and Ferric Iron (황환원균과 3가철을 이용한 Trichloroethylene의 제거에 관한 연구)

  • Hwang, Ki-Chul;Min, Jee-Eun;Park, In-Sun;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.1
    • /
    • pp.24-31
    • /
    • 2008
  • Sulfate reducing bacteria (SRB) is universally distributed in the sediment, especially in marine environment. SRB reduce sulfate as electron acceptor to hydrogen sulfide in anaerobic condition. Hydrogen sulfide is reducing agent enhancing the reduction of the organic and inorganic compounds. With SRB, therefore, the degradability of organic contaminants is expected to be enhanced. Ferrous iron reduced from the ferric iron which is mainly present in sediment also renders chlorinated organic compounds to be reduced state. The objectives of this study are: 1) to investigate the reduction of TCE by hydrogen sulfide generated by tht growth of SRB, 2) to estimate the reduction of TCE by ferrous iron generated due to oxidation of hydrogen sulfide, and 3) to illuminate the interaction between SRB and ferrous iron. Mixed bacteria was cultivated from the sludge of the sewage treatment plant. Increasing hydrogen sulfide and decreasing sulfate confirmed the existence of SRB in mixed culture. Although hydrogen sulfide lonely could reduce TCE, the concentration of hydrogen sulfide produced by SRB was not sufficient to reduce TCE directly. With hematite as ferric iron, hydrogen sulfide produced by SRB was consumed to reduce ferric ion to ferrous ion and ferrous iron produced by hydrogen sulfide oxidation decreased the concentration of TCE. Tests with seawater confirmed that the activity of SRB was dependent on the carbon source concentration.

Aging Effects on Sorption and Desorption of Atrazine in Soils (Atrazine의 토양 흡착 및 탈착에 미치는 접촉시간의 영향)

  • Park Jeong-Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.26-34
    • /
    • 2005
  • The effects of soil-chemical contact time (aging) on sorption and desorption of atrazine were studied in soil slurries because aging is an important determinant affecting on the sorption and desorption characteristics of organic contaminants in the environment. Sorption isotherm and desorption kinetic experiments were performed, and soilwater distribution coefficients and desorption rate parameters were evaluated using linear and non-linear sorption equations and a three-site desorption model, respectively. Aging time for sorption of atrazine in sterilized soil slurries ranged from 2 days to 8 months. Atrazine sorption isotherms were nearly linear $(r^2\;>\;0.97)$ and sorption coefficients were strongly correlated to soil organic carbon content. Sorption distribution coefficients $(K_d)$ increased with increasing aging in all soils studied. Sorption non-linearity did not increase with increased aging except for the Houghton muck soil. Desorption profiles were well described by the three-site desorption model. The equilibrium site fraction $(f_{eq})$ decreased and the non-desorbable site fraction $(f_{nd})$ increased as a function of aging time in all soils. In all soils studied, it was found that when normalized to soil organic matter content the concentration of atrazine in desorbable sites was comparatively constant, whereas that in non-desorbable site increased as aging increased.

Ultrafiltration of Humic and Natural Water: Comparison of Contaminants Removal, Membrane Fouling, and Cleaning (휴믹산 용액 및 자연수의 한외여과: 제거율, 막오염 및 세척특성 비교)

  • Choo, Kwang-Ho;Nam, Mi-Yeon
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.65-74
    • /
    • 2008
  • NOM and fine particles are the main target materials in water treatment using membranes. Particularly, humic substances extracted from soils are frequently used in many fundamental studies representing natural organic matter in raw water for drinking water treatment. In this study, ultrafiltration (UF) of artificial humic water and natural river water was conducted and the characteristics of removal efficiency and permeability were compared. In the UF of river water, the transmembrane pressure increased in the same pattern with that of 5 mg/L humic water. For the removal of organic matter and fine particles, however, two types of feed water had shown different trends. Kaolin particles and humic acids added to artificial water were better removed, while colloids and organics in natural water were relatively poorly removed. From the $UV_{254}$ and GPC analyses, it seemed that the hydrophobicity and size of humic substances contributed to the greater removal of organic matter. The UF membrane applied for humic water also showed a higher flux recovery by caustic chemical cleaning than that for river water.

Application of Activated Carbon and Crushed Concrete as Capping Material for Interrupting the Release of Nitrogen, Phosphorus and Organic Substance from Reservoir Sediments (저수지 퇴적물에서 질소, 인 및 유기물질 용출차단을 위한 활성탄과 폐콘크리트의 피복재로서 적용)

  • Kang, Ku;Kim, Won-Jae;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • This study aims to assess the effectiveness of activated carbon (AC) and crushed concrete (CC) as capping material to block the release of nitrogen, phosphorus, and organic substance from reservoir sediments. The efficiency of AC and CC as capping material was evaluated in a reactor in which a 1 or 3 cm thick layer of capping materials was placed on the sediments collected from Mansu reservoir in Anseong-city. Dissolved oxygen (DO) concentration, total nitrogen (T-N), total phosphorus (T-P), and chemical oxygen demand (COD) concentration in reservoir water above the uncapped sediments and capping material were monitored for 45 days. The release rate of T-N was in the following increasing order: AC 3 cm ($1.18mg/m^2{\cdot}d$) < CC 1 cm ($2.66mg/m^2{\cdot}d$) < AC 1 cm ($2.94mg/m^2{\cdot}d$) < CC 3 cm ($3.42mg/m^2{\cdot}d$) < uncapped ($4.59mg/m^2{\cdot}d$). The release rate of T-P was in the following increasing order: AC 3 cm ($0mg/m^2{\cdot}d$) $${\approx_-}$$ CC 3 cm ($0mg/m^2{\cdot}d$) < CC 1 cm ($0.03mg/m^2{\cdot}d$) < AC 1 cm capped ($0.07mg/m^2{\cdot}d$) < uncapped ($0.24mg/m^2{\cdot}d$). The release of nitrogen and phosphorus were effectively blocked by AC capping of 3 cm thickness, and CC capping of 3 cm thickness effectively controlled the release of phosphorus. The order of increasing COD release rate was as follows: AC 3 cm ($0mg/m^2{\cdot}d$) $${\approx_-}$$ CC 3 cm ($0mg/m^2{\cdot}d$) < CC 1 cm ($5.03mg/m^2{\cdot}d$) < AC 1 cm ($7.28mg/m^2{\cdot}d$) < uncapped ($10.05mg/m^2{\cdot}d$), indicating that AC and CC capping effectively interrupted the release of organic contaminants from the sediments. It was concluded that AC and CC could effectively block the release of T-N, T-P and COD release from contaminated reservoir sediments.

Comparison of Active and Passive Sampler for Determining Temperal and Spatial Concentration Assessment of the Main Volatile Organic Compounds Concentration in Shihwa Industrial Complex (시화산업단지에서 주요 휘발성유기물질의 시간적, 공간적 농도 파악을 위한 능동식과 수동식 시료채취기 비교)

  • Byeon, Sang-Hoon;Choi, Hyeon-Il;Moon, Hyung-Il;Lee, Jung-Geun;Kim, Jung-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.790-796
    • /
    • 2011
  • In this study, we measured the concentrations of volatile organic compounds (VOCs) in Shiwha area by using active and passive sampler. We did a comparative analysis of the characteristics of the active sampler and passive sampler. In the case of the passive sampler, the average TVOC concentration of the industrial area was 1.86 times higher than that of the residential area. In the case of the active sampler, the average TVOC concentration of the industrial area was 1.07 times higher than that of the residential area. When using the passive sampler, the concentration of VOCs in the industrial area was noted to be higher than the concentration found in the residential area. However, when we used the thermal desorption tube, the concentration of residential area was higher rather than that of industrial area in some substances such as trichloroethylene, toluene, ethylbenzene, and xylene. Toluene was a larger percentage of the overall BTEX ratio. In case of the passive sampler, the relative ratio of toluene, ethylbenzene, and xylene was higher in the industrial area than in the residential area. In contrast in case of the thermal desorption tube, the ratio of these substances was higher in the residential area rather than in the industrial area. The passive sampling in this study showed an appropriate method to analyze the temporal and spatial concentrations of air contaminants. This assessment would prove to be useful for its observance of standards or epidemical study.

Analysis of contamination characteristics of filter cloth in filter press by repeated dehydration of organic sludge and evaluation of ultrasonic cleaning application (유기성 슬러지 반복 탈수에 의한 필터프레스 여과포 오염 특성 분석 및 초음파 세척 적용 평가)

  • Eunju Kim;Cheol-Jin Jeong;Kyung Woo Kim;Tae Gyu Song;Seong Kuk Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.2
    • /
    • pp.15-25
    • /
    • 2024
  • In this study, the regeneration effect of pressurized water and ultrasonic cleaning was investigated for contaminated filter cloth from the sewage sludge filter press process. For this purpose, contaminated filter cloth was collected from a 3-ton sewage sludge hydrothermal carbon treatment filter press. First, the contamination characteristics were analyzed. According to the location of the filter cloth, air permeability and unit mass were measured, and compared with the values of a new filter cloth. Next, the results were mapped over the entire area to evaluate the contamination characteristics. Finally, pressure cleaning at 3 bar and ultrasound at frequencies of 34, 76, 120, and 168 kHz were performed on the contaminated filter cloth. In addition, the cleaning efficiency was evaluated by 3 levels of contamination degree. As a result, pore contamination occurred mainly at the bottom and both sides of the filter cloth, where the filter material was continuously injected and compressed. Surface contamination appeared evenly over the entire area. As a result of washing, air permeability increased by 1.3-3.1%p and contaminant removal was by 2.7-4.4% under pressure. In ultrasonic cleaning, air permeability increased by 12.5-61.5%p and contaminants were removed by 2.7-29.2%. In ultrasonic cleaning the lower the frequency, the higher air permeability and contaminant removal rate. Also, The higher pore contamination level, the better the air permeability improvement and contaminant removal.