• 제목/요약/키워드: Organic Contaminants

검색결과 383건 처리시간 0.027초

잔류농약, 무기물 분석에 의한 유기농 채소의 판별: 유기농 채소의 잔류농약 함량 (Content of Pesticide Contaminants Content in Organic Vegetables)

  • 김형열;이근보
    • 한국식품저장유통학회지
    • /
    • 제11권1호
    • /
    • pp.57-62
    • /
    • 2004
  • 강원도 홍천 유기농 재배단지 내에서 재배한 5종의 농산물 즉, 케일, 신선초, 셀러리, 상추 및 파와 가락동 시장에서 구입한 일반재배 야채를 시료로 하여 잔류농약의 성분함량을 측정하였다. 5종의 야채에서 잔류농약 성분 함량을 측정해본 결과, 일반재배 야채의 경우는 각각 93.5, 57.7, 112.4, 76.5, 65.2 ppm이 잔류하여 규격기준 대비 75.35, 70.68, 78.49, 70.49%의 잔류율을 나타내었다. 상대적으로 유기농 야채의 경우는 각각 36.4, 21.0, 42.9, 29.1, 25.1 ppm이 잔류하여 전체적으로 규격기준의 30% 이하 잔류율을 나타내었고, 일반재배 야채의 38.93, 36.40, 38.17, 38.04, 38.50% 수준에 달하는 농약성분이 잔류하여 일반재배 야채 대비 40% 이하의 농약성분만이 함유되어 있었다.

강변여과에서 콜로이드 물질이 오염물 거동에 미치는 영향 (Effect of Colloids on Contaminant Transport in Riverbank Filtration)

  • 김대환;이상일;유상연
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.1398-1402
    • /
    • 2005
  • Riverbank filtration is a natural process using alluvial aquifers to remove contaminants and pathogens in river water for the production of drinking water. In riverbank filtration, the understanding of contaminant transport is an important task for the production of high quality drinking water. This study investigates the transport behavior of hydrophobic organic contaminants when colloids (dissolved organic matter and bacteria) are present in the aquifer. A mathematical model for the transport of contaminants is developed and solved numerically for various situations. Results show that in the riverbank filtration the presence of DOM and bacteria enhances the mobility of contaminant significantly. Sensitivity analysis indicates that the distribution of the total aqueous Phase contaminant is significantly affected by distribution coefficients which account for affinity of solid or colloidal Phase to contaminant.

  • PDF

토양에서 유기화합물질의 침투 거동 연구 (Analysis on the Seepage Behavior of Organic Contaminants in Soil)

  • 이준호;한선향;박갑성
    • 한국물환경학회지
    • /
    • 제29권4호
    • /
    • pp.489-496
    • /
    • 2013
  • 지하수계의 근간을 이루는 토양시스템은 유기화학물질에 오염되기 쉬운 환경에 놓인다. 이러한 토양의 유기화학물질 침투 거동을 평가하기 위해 점토, 실트 및 모래로 구성된 실험장치에 유기화학 물질 이동실험을 하였다. Chloroform, 1,1,1-trichloroethane 및 trichloroethylene은 토양을 통해 이동이 쉽게 이루어지며, 투과된 오염물질의 질량은 전체 질량의 최소 4.6에서 최대 19.2% 범위를 보였다. Tetrachloroethylene Tetrachloroethylene, 1,2-dichlorobenzene 및 1,3-dichlorobenzene은 토양 흡착에 의해 이동이 지연되어졌으며, 각 매개체의 0.6 ~ 4.8%가 표층에서 여과되는데 이용되었다. Carbon tetrachloride는 거의 투과되지 못하였고, 단지 0.1 ~ 0.4% 질량만이 침투거동에 도달하였다. Bromoform은 거의 투과되지 못하였으며, 브롬화(Br) 화합물의 중간 전환물질로도 확인되었다. 유기화학오염물들의 이동은 토양입자크기 및 수리전도도 등에 따라 달라진다고 여겨지나 본 연구에서는 유기화학오염물들의 이동은 점토, 실트 토양보다 모래 토양에서 더욱 빠르게 나타났다.

토양 세척 시 초음파 적용에 따른 유기 오염물 제거 특성 평가 (Removal Characteristics of Organic Contaminants by Ultrasonic Soil Washing)

  • 임찬수;김석구;김원재;고석오
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권6호
    • /
    • pp.72-79
    • /
    • 2014
  • Cavitation generated by ultrasonic irradiation can enhance the diffusional transport of organic contaminants from soil surfaces or pores. Therefore, ultrasound soil washing can be an alternative of traditional soil washing process. In this study, soil was artificially contaminated with n-tetradecane, n-hexadecane and phenanthrene. A plate type ultrasonic reactor at 25 kHz frequency and 1000W power was used for laboratory soil washing experiments. Ultrasonic soil washing efficiency was compared with those of traditional soil washing using mechanical mixing. Various operational parameter such as soil/liquid ratio, irradiation time, particle size, and soil organic matter content was tested to find out the optimum condition. It was found that ultrasonic soil washing demonstrates better performance than mechanical soil washing. Optimum soil:liquid ratio for ultrasonic soil washing was 1 : 5. Desorption of organic contaminants from soils by ultrasonic irradiation was relatively fast and reached equilibrium within 10 minute. However, decrease in the soil particle sizes by ultrasonic irradiation results in re-adsorption of contaminants to soil phase. It was also observed that soil particle size distribution and soil organic matter content have significant effects on the efficiency of ultrasonic soil washing.

Pulse UV 장치를 이용한 원유비축시설 발생폐수의 난분해성 유기오염물질 제거 (Removal of Non-biodegradable Organic Contaminants in Wastewater from crude oil reserve base Using Pulse UV System)

  • 손진식;박순호;정의택
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.861-867
    • /
    • 2011
  • Wastewater from crude oil reserve base usually contains large amount of non-biodegradable contaminants. The conventional wastewater treatment progress can hardly meet the regulation of wastewater effluent quality. This study investigated the removal of non-biodegradable organic contaminants in wastewater from crude oil reserve base using a pulse UV treatment. The modified process incorporating pulse UV process was set up to treat the wastewater from crude oil reserve base. The treatment process is composed with coagulation and flocculation, micro-bubble flotation, sand filter, pulse UV system, and GAC filter. The results show CODMn was effectively removed by the process with pulse UV system and it can meet the wastewater effluent regulation. The single effect of pulse UV process in CODMn removal was not significant(9~15% based on sand filtered effluent), however with the subsequent activated carbon filter the removal ratio CODMn was increased up to 28% compared to the process without pulse UV syetem.

식물에 의한 계절별 실내공기오염물질 저감효과에 관한 연구 (A Study on Indoor Air Pollutants Reduction Effect by Plants per Season)

  • 손정은;김용식;손장열
    • KIEAE Journal
    • /
    • 제8권1호
    • /
    • pp.25-30
    • /
    • 2008
  • This study aims at examining the reduction of indoor air contaminants by plants placed in an indoor space. The effect of reducing the concentration of air contaminants by three species of plants was studied in a full-scale mock-up model. Field measurements were performed using Aglaonema brevispathum, Pachira aquatica and Ficus benjamiana which were verified as air-purifying plants by NASA. Their positions and amount were controlled. Two conditions for the amount of plants(10%, 5%) and positions(sun-shine, scatter) were used in two separate rooms whose dimensions are identical. The concentration of Volatile Organic Compounds(VOCs) was monitored three hours after the plants were placed and three days after the plants were placed. The variations of concentration of Benzene, Toluene, Etylbenzene, Xylene, Stylene and Formaldehyde, which are all known as the major elements of Volatile Organic Compounds were monitored. The more plants were used, the more a reduction of indoor air contaminants occurred. The effect of reducing the concentration of air contaminants increased when the amount of plants increased.

Trace Organic Contaminants in Sediments from Deep-sea Basin near Dokdo, Korea

  • Yim, Un-Hyuk;Oh, Jae-Ryoung;Hong, Sang-Hee;Li, Dong-Hao;Shim, Won-Joon;Choi, Hye-Kyung;Kim, Eun-Soo;Shim, Jae-Hyung
    • Ocean and Polar Research
    • /
    • 제24권4호
    • /
    • pp.391-398
    • /
    • 2002
  • Trace organic contaminants in deep-sea sediments near Dokdo were analyzed. Total PAMs concentration ranged 14.8-314 ng/g dry weight and high molecular weight PAHs were dominant. The highest PAHs concentration was detected at A19 which located at Ulleung Basin. Most of organochlorines were under detection limit. Among the detected organochlorines, DDT compounds were dominant and followed by HCHs and HCB. Butyltin compounds and most of organophosphorus pesticides were not detected. Vertical distribution of PAHs showed typical sub-surface maximum and decreasing trends depending on depth. The highest PAHs concentration reached 454ng/g. Some organochlorines, DDT, HCH was detected and also showed decreasing trends. Other target organic pollutants were not detected in core sediments. Abnormally high level of PAHs concentration in A19 was discussed and the input sources were inferred to be the transport of sludge derived pollutant dumped at dumping site 'Byung' by deep current.

공정수 내의 오염물질이 종이의 물성에 미치는 영향 (Effects of the Contaminants in Papermaking Process Water on Physical Properties of Paper)

  • 이학래;함충현;이지영
    • 펄프종이기술
    • /
    • 제36권1호
    • /
    • pp.16-23
    • /
    • 2004
  • Recently the increased concerns about the cost reduction and environmental protection make the paper industry increase the closure level of papermaking system, which results in the buildup of organic and inorganic materials in the papermaking process water. Increase of the system closure causes deterioration of additive performance and provokes diverse problems in papermaking process and product quality. To investigate the effects of process water quality on the physical properties of fine papers handsheets were prepared with process water containing various amounts of inorganic and organic contaminants including calcium or sodium ions and oxidized or cationic starches. Inorgainc and organic materials did not show any significant effect on the physical properties of handsheets. Recycled GCC showed the same trends as inorganic and organic materials. The performance of cationic starch was deteriorated, however, in the recycled white water, which resulted in the reduction of tensile index of handsheets.

휴믹산이 black shale과 오염물질의 분포에 미치는 영향에 대한 연구 (Effect of Humic acid on the Distribution of the Contaminants with Black Shale)

  • 민지은;박재우
    • 한국물환경학회지
    • /
    • 제20권6호
    • /
    • pp.670-675
    • /
    • 2004
  • Humic acids are macromolecules originated from natural water, soil, and sediment. The characteristics of humic acid enable it to change the distribution of metals as well as many kinds of organic contaminants and to determine the sorption of them from soil solution. To see the effect of humic acid on the removal rate of organic contaminants and heavy metals, batch-scale experiments were performed. As a natural geosorbent, black shale was used as a sorbent media, which showed hight sorption capacity of trichloroethylene (TCE), lead, cadmium and chromium. The effect of sorption-desorption, pH, ionic strength and the concentration of humic acid was taken into consideration. TCE sorption capacity by black shale was compared to natural bentonite and hexadecyltrimethylammonium (HDTMA) modified bentonite. The removal rate was good and humic acid also sorbed onto black shale very well. The organic part of humic acid could effectively enhance the partition of TCE and it act as an electron donor to reduce Cr(VI) to Cr(III). Cationic metal of Pb(II) and Cd(II) also removed from the water by black shale. With 3 mg/L of humic acid, both Pb(II) and Cd(II) were removed more than without humic acid. That could be explained by sorption and complexation with humic acid and that was possible when humic acid could change the hydrophobicity and solubility of heavy metals. Humic acid exhibited desorption-resistivity with black shale, which implied that black shale could be an alternative sorbent or material for remediation of organic contaminants and heavy metals.

Oxidation of organic contaminants in water by iron-induced oxygen activation: A short review

  • Lee, Changha
    • Environmental Engineering Research
    • /
    • 제20권3호
    • /
    • pp.205-211
    • /
    • 2015
  • Reduced forms of iron, such as zero-valent ion (ZVI) and ferrous ion (Fe[II]), can activate dissolved oxygen in water into reactive oxidants capable of oxidative water treatment. The corrosion of ZVI (or the oxidation of (Fe[II]) forms a hydrogen peroxide ($H_2O_2$) intermediate and the subsequent Fenton reaction generates reactive oxidants such as hydroxyl radical ($^{\bullet}OH$) and ferryl ion (Fe[IV]). However, the production of reactive oxidants is limited by multiple factors that restrict the electron transfer from iron to oxygen or that lead the reaction of $H_2O_2$ to undesired pathways. Several efforts have been made to enhance the production of reactive oxidants by iron-induced oxygen activation, such as the use of iron-chelating agents, electron-shuttles, and surface modification on ZVI. This article reviews the chemistry of oxygen activation by ZVI and Fe(II) and its application in oxidative degradation of organic contaminants. Also discussed are the issues which require further investigation to better understand the chemistry and develop practical environmental technologies.