• 제목/요약/키워드: Organelle and protein fractionation

검색결과 2건 처리시간 0.016초

Nutriproteomics: Identifying the Molecular Targets of Nutritive and Non-nutritive Components of the Diet

  • Barnes, Stephen;Kim, Helen
    • BMB Reports
    • /
    • 제37권1호
    • /
    • pp.59-74
    • /
    • 2004
  • The study of whole patterns of changes in protein expression and their modifications, or proteomics, presents both technological advances as well as formidable challenges to biological researchers. Nutrition research and the food sciences in general will be strongly influenced by the new knowledge generated by the proteomics approach. This review examines the different aspects of proteomics technologies, while emphasizing the value of consideration of "traditional" aspects of protein separation. These include the choice of the cell, the subcellular fraction, and the isolation and purification of the relevant protein fraction (if known) by protein chromatographic procedures. Qualitative and quantitative analyses of proteins and their peptides formed by proteolytic hydrolysis have been substantially enhanced by the development of mass spectrometry technologies in combination with nanoscale fluidics analysis. These are described, as are the pros and cons of each method in current use.

저선량 방사선에 의한 Ikaros-Autotaxin 상호작용 조절 효과 (The Regulatory Effects of Low-Dose Ionizing Radiation on Ikaros-Autotaxin Interaction)

  • 강한아;조성준;김성진;남선영;양광희
    • 방사선산업학회지
    • /
    • 제10권1호
    • /
    • pp.7-12
    • /
    • 2016
  • Ikaros, a transcription factor containing zinc-finger motif, has known as a critical regulator of hematopoiesis in immune system. Ikaros protein modulates the transcription of target genes via binding to the regulatory elements of the genes promoters. However the regulatory function of Ikaros in other organelle except nuclear remains to be determined. This study explored radiation-induced modulatory function of Ikaros in cytoplasm. The results showed that Ikaros protein lost its DNA binding ability after LDIR (low-dose ionizing radiation) exposure. Cell fractionation and Western blot analysis showed that Ikaros protein was translocated into cytoplasm from nuclear by LDIR. This was confirmed by immunofluorescence assay. We identified Autotaxin as a novel protein which potentially interacts with Ikaros through in vitro protein-binding screening. Co-immunoprecipitation assay revealed that Ikaros and Autotaxin are able to bind each other. Autotaxin is a crucial enzyme generating lysophosphatidic acid (LPA), a phospholipid mediator, which has potential regulatory effects on immune cell growth and motility. Our results indicate that LDIR potentially regulates immune system via protein-protein interaction of Ikaros and Autotaxin.