• Title/Summary/Keyword: Oregano extract

Search Result 13, Processing Time 0.015 seconds

Effect of Phytogenic Feed Additives in Soybean Meal on In vitro Swine Fermentation for Odor Reduction and Bacterial Community Comparison

  • Alam, M.J.;Mamuad, L.L.;Kim, S.H.;Jeong, C.D.;Sung, H.G.;Cho, S.B.;Jeon, C.O.;Lee, K.;Lee, Sang Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.2
    • /
    • pp.266-274
    • /
    • 2013
  • The effect of different phytogenic feed additives on reducing odorous compounds in swine was investigated using in vitro fermentation and analyzed their microbial communities. Soybean meal (1%) added with 0.1% different phytogenic feed additives (FA) were in vitro fermented using swine fecal slurries and anaerobically incubated for 12 and 24 h. The phytogenic FAs used were red ginseng barn powder (Panax ginseng C. A. Meyer, FA1), persimmon leaf powder (Diospyros virginiana L., FA2), ginkgo leaf powder (Ginkgo biloba L., FA3), and oregano lippia seed oil extract (Lippia graveolens Kunth, OL, FA4). Total gas production, pH, ammonianitrogen ($NH_3$-N), hydrogen sulfide ($H_2S$), nitrite-nitrogen ($NO_2{^-}$-N), nitrate-nitrogen ($NO_3{^-}$-N), sulfate (${SO_4}^{--}$), volatile fatty acids (VFA) and other metabolites concentration were determined. Microbial communities were also analyzed using 16S rRNA DGGE. Results showed that the pH values on all treatments increased as incubation time became longer except for FA4 where it decreased. Moreover, FA4 incubated for 12 and 24 h was not detected in $NH_3$-N and $H_2S$. Addition of FAs decreased (p<0.05) propionate production but increased (p<0.05) the total VFA production. Ten 16S rRNA DGGE bands were identified which ranged from 96 to 100% identity which were mostly isolated from the intestine. Similarity index showed three clearly different clusters: I (FA2 and FA3), II (Con and FA1), and III (FA4). Dominant bands which were identified closest to Eubacterium limosum (ATCC 8486T), Uncultured bacterium clone PF6641 and Streptococcus lutetiensis (CIP 106849T) were present only in the FA4 treatment group and were not found in other groups. FA4 had a different bacterial diversity compared to control and other treatments and thus explains having lowest odorous compounds. Addition of FA4 to an enriched protein feed source for growing swine may effectively reduce odorous compounds which are typically associated with swine production.

Optimization of extraction conditions of flavonoid compounds from Thyme (Thymus vulgaris Libiatae) (타임으로부터의 플라보노이드 화합물의 추출 조건 최적화)

  • Park, Yunjin;Lee, Jumi;In, Man-Jin;Chae, Hee Jeong
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.1
    • /
    • pp.111-116
    • /
    • 2020
  • Total polyphenol contents, flavonoid contents, 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activities of ethanol extracts of 20 herbal plants (sage, turmeric, mace, bayleaf, fenugreek, oregano, blackpepper, whitepepper, clove, marjoram, cinnamon, coriander, basil, dillseed, mustard, cadamon, thyme, celery, rosemary, cumin) were analyzed for the screening of high flavonoid-containing plant resource. Thyme extract, showing the highest flavonoid content and a high degree of antioxidant activity, was selected as a bioactive cosmetic material. The total polyphenols and flavonoids contents of thyme extracts were measured as 6.90 mg chlorogenic acid equivalent (CAE)/100 g and 1.71 mg naringin equivalent (NE)/100 g, respectively, and DPPH radical scavenging activities was 90%. Among the tested organic solvents, hexane gave the highest extraction yield. Thus hexane was selected as the most suitable solvent for the extraction of thyme. Response surface method was used to obtain optimized extraction conditions for thyme: reaction temperature of 35.9 ℃, raw material to hexane ratio of 1.63:25 (w/v), and reaction time of 192 min. These predicted extraction conditions was validated by a total flavonoid extraction experiment showing a value equivalent to 96.3% of the predicted total flavonoid content. It is expected that the optimized solvent extraction conditions could be used for the production of flavonoid using thyme.

Control of Kimchi Fermentation by the Addition of Natural Antimicrobial Agents Originated from Plants (식물유래 천연항균물질 첨가에 의한 김치의 발효조절)

  • Seo, Hyun-Sun;Kim, Seonhwa;Kim, Jinsol;Han, Jaejoon;Ryu, Jee-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.583-589
    • /
    • 2013
  • We investigated the delay of kimchi fermentation by the addition of plant extracts. Fifteen plant extracts were screened for inhibitory activity aginst Lactobacillus plantarum by using an agar well diffusion assay, and determined the minimal inhibitory concentration (MIC) and minimal lethal concentration (MLC) were determined. The lowest MIC for grapefruit seed extract (GFSE; 0.0313 mg/mL) was determined, followed by Caesalpinia sappan L. extract (CSLE; 0.25 mg/mL), and oregano essential oil (OREO; 1.0 mg/mL). GFSE, CSLE, and OREO were individually added to kimchi, and incubated the samples at 10 for up to 20 days. Results showed that the addition of GFSE (0.3 and 0.5%), CSLE (0.1, 0.3, and 0.5%), or OREO (0.5 and 1.0%) led to a significant increase in the pH of kimchi, and also a significant reduction in the numbers of lactic acid bacteria. Taken together, the addition of natural antimicrobial agents can delay kimchi fermentation.