• Title/Summary/Keyword: Ore recovery

Search Result 60, Processing Time 0.022 seconds

A study on the Beneficiation of Muscovite Ore (백운모광의 품위향상에 관한 연구)

  • Lee, Jae-Jang;Choi, Soo-Yong
    • Journal of Industrial Technology
    • /
    • v.9
    • /
    • pp.29-41
    • /
    • 1989
  • A general study on the upgrading of mica minerals which are mainly found in pegmatite deposits was carried out for the purpose of developing a technique for recovering mica in form of comercial grade products. By the way the grade one of about 5~6% $K_2O$ still is not developed. The target of this research work is to be establish a process for the efficient concentration of muscovite, containing more than 10% $K_2O$. The tests are applied to incraese the recovery and grade of concentrates in term of variations of conditions. The test sample consists of mainly muscovite and gangue mineral such as quartz, pyrite and chlorite. Decantation and shaking table tests were ineffective to up-grade this low grade one, but flotation method gave satisfactory result. By means of grade one, but flotation method gave satisfactory result. By means of grindability tests, an optimum result could be obtained from the sample ground to -48mesh feed size. The flotation result indicates that the dodecyl ammonium chloride used as a cationic collector is effective on the negatively charged surface, while the sodium dodecyl sulfate as an anionic collector is effective on the positively charged surface. Muscovite was floated by petroleum sulfonate as well as amine type collector, it also floated by MIBC as well as pine oil frother under well condition. Fine muscovite concentrates of about 10.68% $K_2O$ was obtained with 22.4% yield, by decantation, the muscovite concentrates of 10.10% $K_2O$ was obtained with 23.54% yield, by table concentration, the muscovite concentrates of 11.51% $K_2O$ was obtained with 23.0% yield by flotation.

  • PDF

A Study on Treatment of Wastes from the Uranium Ore Dissolution/purification and Nuclear Fuel Powder Fabrication (우라늄 정광의 용해/정제 및 핵연료 분말 가공공정에서 발생된 폐액의 처리에 관한 연구)

  • Jeong, Kyung-Chai;Hwang, Seong-Tae
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.99-107
    • /
    • 1997
  • This study Provides the treatment methods of liquid wastes from the dissolution/purification process of nuclear fuel raw material and the fabrication process of nuclear fuel powder. One of the treatment methods is to process liquid waste from uranium raw material dissolution/purification process. This waste, of the strong acid, can be reused to dissolve the fine ADU particles in filtrate which is ADU waste of pH 8.0 converted from AUC waste after recovery of uranium. To dissolve the fine ADU particles, ADU filtrate was pretreated to pH 4.0 with the dissolution/purification waste, and then mixed with the lime to pH 9.2 and aged for 30 minutes. From this processing, uranium content of the filtrate was decreased to below 3ppm. The waste from fuel powder fabrication is emulsified solution dispersed with fine oil droplets. This emulsion was destroyed effectively by adding and mixing the nitric acid with rapid heating at the same time. After this processing, $Na_2U_2O_7$ compound is produced by addition of NaOH. Optimum condition of this processing was shown at pH 11.5, and uranium content of the filtrate was analyzed to 5ppm. To remove the trace of uranium in the filtrate, lime should be added. Otherwise, 4N nitric acid was used to destroy the emulsion directly, and then lime was added to this waste. Uranium content of the treated filtrate was below 1 ppm. In addition to these wastes, the trace of uranium in filtrate after recovery of uranium from the AUC waste which is produced during PWR power preparation, is treated with NaOH to takeup fluorine(F) in the waste because fluorine is valuable and toxic material. In the finally treated waste, uranium was not detected.

  • PDF

A Study for Recoverability of Iron Resource in Red Mud (레드머드 내 철 자원 회수 가능성 고찰)

  • Kim, Bong-Ju;Kwon, Jang-Soon;Koh, Yong-Kwon;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.297-306
    • /
    • 2020
  • The red mud generated from bauxite during the Bayer alumina production process has been regarded as an industrial waste due to the high alkaline property and high content of Na. Despite of its environmental problem, various studies for recovery of the valuable resources from red mud has been also carried out because of high content (25.7 wt.% as Fe2O3 in this study) of iron in red mud. In order to recover the iron resource in the red mud, microwave heating experiments were performed with adding of activated carbon and elemental sulfur to the red mud. Through the microwave heating the powdered red mud mixtures converted to porous and vitrified solid aggregates. The vitrified aggregates produced by microwave heating are composed of goethite, zero valent iron (Fe0), pyrrhotite and pyrite. And then, the microwave heating samples were dissolved in the aqua regia solution, and Fe precipitates were obtained as a Fe-chlorides by adding of NaCl salt in the aqua regia solution. The Fe recovery rates in the Fe-chloride precipitates showed differences depending on the experimental mixture conditions, and Fe grades of the end products are 49.0 wt.%, 58.0 wt.% and 59.5 wt.% under mixture conditions of red mud, red mud + activated carbon, and red mud + activated carbon + elemental S, respectively. The Fe content of 56.0 wt.% is generally known as the grade value of Fe in a iron ore for iron production, and the Fe grades of microwave heating samples with adding activated carbon and elemental S in this study are higher than the grade value of 56.0 wt.%.

A Basic Study for the Talc Flotation from Hand Picking Tailings of Dong Yang Talc Mine (동양활석광산의 수선광미로부터 활석부선을 위한 기초연구)

  • 송영준;박찬훈;지정만
    • Resources Recycling
    • /
    • v.1 no.1
    • /
    • pp.69-77
    • /
    • 1992
  • In this study, a talc flotation was fundamentally carried out with dolomite origin talc ore produced in Dong Yang Talc Mine at Chung-Ju. This ores are mainly composed with talc as a valuable mineral, dolomite as a gangue mineral and other minor minerals of hornblende, tremolite, actinolite, chlorite, calcite, epidote and iron oxide. In order to obtain some of fundamental data for the talc flotation from low grade dolomitic talc tailings which were abandoned -25mm +17 mm size, after the treatment of crude talc ores by screening and hand -picking at the mine, flotation characteristics of the pure talc and dolomite in this ores were first investigated by measuring floatability of the minerals at some experiment conditions. Furthermore, Several times of batch flotations for talc were performed experimentally to recover talc from the low grade dolomitic talc tailings. From the results obtained in this experiment, the conclusions can be summarized as follows ; 1) In the flotation of pure talc, the use of Dowfroth 250 as frother was the most effective in various kinds of frother and the proper addition amount was about 50 mg/${\ulcorner}$(200g/t) at the condition of this experiment. 2) In the flotation of pure talc, the use of kerosene as collector was not adequate, at the addition over 50mg/l of Dowfroth 250. 3) The adequate pH of pulp ranged from pH6 to pH9 in the talc flotation using Dowfroth 250 as frother. 4) The use of Quebracho as depressant for dolomite was not adequate for the recovery of talc, and more selective depressant was required. 5) In the talc flotation on D sample(dolomitic talc tailing), the suitable number of cleaning time was about 3. 6) At this experimental conditions for the talc flotation on D sample, the talc flotation concentrates of 1. 40% CaO and 84.5 whiteness could be recovered with the talc recovery of about 53%.

  • PDF

Current Status and Necessity of Separation Technology to Secure Vanadium Mineral Resources (바나듐 광물자원 확보를 위한 선별 기술 현황 및 필요성)

  • Jeon, Hoseok;Han, Yosep;Baek, Sangho;Davaadorj, Tsogchuluun;Go, Byunghun;Jeong, Dohyun;Chu, Yeoni;Kim, Seongmin
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.3-11
    • /
    • 2022
  • Owing to the global development of high-strength alloys and renewable energy industries, the demand for vanadium, a key raw material in these industries, is expected to increase. Until now, vanadium has been recovered as a by-product of the industry, but interest in its direct recovery from minerals has increasing with its significantly increasing demand. In particular, the recovery of vanadium from stone coal ore and vanadium titano-magnetite (VTM) containing vanadium has been actively researched in China, which has the largest reserves and production of vanadium in the world. In Korea, a large amount of VTM also occurs in the northern part of Gyeonggi-do, and fundamental research and technical development is being conducted to recover vanadium. It is necessary to understand the current status of the separation technology used worldwide to satisfy the demand for metals such as vanadium, which currently depends on imports.

Life Cycle Environmental Analysis of Valuable Metal (Ag) Recovery Process in Plating Waste Water (폐도금액내 유가금속(Ag) 회수 공정에 대한 전과정 환경성 분석)

  • Da Yeon Kim;Seong You Lee;Yong Woo Hwang;Taek Kwan Kwon
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.12-18
    • /
    • 2023
  • In 2018, the demand for silver (referred to as Ag) in the electrical and electronics sector was 249 million tons. The demand stood at 81 million tons in the solar module production sector. Currently, due to the rapid increase in solar module installation, the demand for silver is increasing drastically in Korea. However, Korea's natural metal resources and reserves are insufficient in comparison to their consumption, and the domestic silver ore self-sufficiency rate was as low as 2.2% as of 2021. This implies that a recycling technology is necessary to recover valuable metal resources contained in the waste plating solution generated in the metal industry. Therefore, this study compared and analyzed, the results of the impact evaluation through life cycle assessment according to an improvement in the process of recovery of valuable metals in the waste plating solution. The process improvement resulted in reducing GWP (Global Warming Potential) and ADP(Abiotic Depletion Potential) by 50% and 67%, respectively. The GWP of electricity and industrial water was reduced by 98% and 93%, respectively, which significantly contributed to the minimization of energy and water consumption. Thus, the improvement in recycling technology has a high potential to reduce chemical and energy use and improve resource productivity in the urban mining industry.

Effects of Vanadate Solution Property on the Precipitation of Ammonium (Meta, Poly)Vanadate (바나데이트 수용액 특성이 암모늄(메타, 폴리)바나데이트 침전에 미치는 영향)

  • Ho-Sung Yoon;Seo Jin Heo;Yujin Park;Rina Kim;Chul-Joo Kim;Kyeong Woo Chung;Hong In Kim
    • Resources Recycling
    • /
    • v.32 no.3
    • /
    • pp.26-37
    • /
    • 2023
  • Good control of the solution pH and temperature is required to recover vanadium from the water leaching solution of vanadium ore after sodium roasting. However, such adjustments could lead to aluminum-vanadium and sodium-vanadium co-precipitation, which greatly affects the efficiency of vanadium recovery. In this study, a process that can increase the efficiency of vanadium recovery as ammonium metavanadate [NH4VO3] and ammonium polyvanadate [(NH4)2V6O16·H2O] was investigated by examining the characteristics of vanadium-containing aqueous solutions during precipitation. The aluminum content of vanadium-containing water leaching solutions has a great effect on the loss of vanadium when the pH of the aqueous solution is adjusted to 9. Therefore, a process to minimize aluminum leaching is also required. In this study, ~99% or more of vanadium present in vanadium-containing aqueous solutions was precipitated and recovered as NH4VO3 by adding 3 equivalents of ammonium chloride relative to the vanadium content at pH 9 and room temperature. (NH4)2V6O16·H2O was precipitated from the aluminum-vanadium coprecipitates generated during the pH-adjustment of the aqueous solutions to 9 by dissolving the coprecipitate in the solutions at pH 2.5 and controlling their sodium content to 2,000 mg/L or less. Approximately, 98% or more of the available (NH4)2V6O16·H2O could be precipitated and recovered from a solution with a vanadium content of 2,200 mg/L and a sodium content of 1,875 mg/L at pH 2.5 by adding approximately 3 equivalents of ammonium chloride relative to the vanadium content at 95℃ or higher. The overall process could precipitate and recover, approximately 91% or more of the total vanadium in the water leaching solution as NH4VO3 and (NH4)2V6O16·H2O.

Effect of Metal Ions on Iron Oxidation Rate of Thiobacillus ferrooxidans Used in a Bioleaching Process (Bioleaching에 사용되는 Thiobacillus ferrooxidans의 철산화 속도에 미치는 금속 이온의 영향)

  • 최문성;조경숙
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.54-60
    • /
    • 2001
  • The activity of microorganisms is an important factor that determines the efficiency of the bacterial recovery of precious metals from low-grade ore. Metal-leaching microorganisms must have a tolerance, within the concentration levels encountered to leached metals. In this study, the tolerance levels of Thiobacillus ferroxidans to the single and mixed metal ions systems, composed of $Zn^{2+}$, $Cu^{2+}$, $Ni^{2+}$, and $Cd^{2+}$ were investigated. When single metal ions of $Zn^{2+}$ (10~60 g/L), $Cu^{2+}$ (1~6 g/L), $Ni^{2+}$ (1~6 g/L), or $Cd^{2+}$ (1~6 g/L) were added to the growth medium of T. ferrooxidans, the iron oxidation rate of this bacterium was not significantly inhibited. The maximum inhibition percentage observed on the iron oxidation rate of T. ferrooxidans was approximately 50% in the medium supplemented with two or three mixed metal ions of $Cu^{2+}$, $Ni^{2+}$, and $Cd^{2+}$. However, when $Zn^{2+}$ was also added to the medium with the other metal ions, the inhibitory effect on the iron oxidation activity of T. ferroxidans was remarkably increased.

  • PDF

Study on the Restoration of Ancient Smelting and Smithing Technologies in the Jungwon Area (재현실험을 통한 중원지역 고대 제련-단야기술의 공정별 특성 연구)

  • Lee, Eunwoo;Kwak, Byeongmoon;Kim, Eunji;Han, Youngwoo;Park, Chonglyuck
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.519-532
    • /
    • 2017
  • Studies on ancient ironmaking technologies are primarily based on archaeological surveys and scientific analysis data, and technological systems are examined by comparing the results of restorative experiments. In this study, to examine the ancient iron production technologies such as smelting and smithing in the Jungwon area, a restoration experiment was conducted based on archaeological data, and the iron and slag, etc. produced in the experiment were analyzed. Further, the changes in physicochemical properties due to the smelting of the raw material, specifically, iron ore were determined, and the smithing process, which involves fabrication of ironwares, was analyzed along with the characteristics of each step. In the case of smelting, increasing recovery rates and production of high-quality primary iron material were important for the following processes. For the iron bars produced through the smithing process, it was found that quality improvements made by reducing physical defects such as inclusions or gas holes were more important than the composition of the iron itself. The study also yielded comparative study data for various byproducts, such as smithing slag, which could be utilized in other ironmaking technology studies.

Leaching Kinetics of Praseodymium in Sulfuric Acid of Rare Earth Elements (REE) Slag Concentrated by Pyrometallurgy from Magnetite Ore

  • Kim, Chul-Joo;Yoon, Ho-Sung;Chung, Kyung Woo;Lee, Jin-Young;Kim, Sung-Don;Shin, Shun Myung;Kim, Hyung-Seop;Cho, Jong-Tae;Kim, Ji-Hye;Lee, Eun-Ji;Lee, Se-Il;Yoo, Seung-Joon
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.46-52
    • /
    • 2015
  • A leaching kinetics was conducted for the purpose of recovery of praseodymium in sulfuric acid ($H_2SO_4$) from REE slag concentrated by the smelting reduction process in an arc furnace as a reactant. The concentration of $H_2SO_4$ was fixed at an excess ratio under the condition of slurry density of 1.500 g slag/L, 0.3 mol $H_2SO_4$, and the effect of temperatures was investigated under the condition of 30 to $80^{\circ}C$. As a result, praseodymium oxide ($Pr_6O_{11}$) existing in the slag was completely converted into praseodymium sulfate ($Pr_2(SO_4)_3{\cdot}8H_2O$) after the leaching of 5 h. On the basis of the shrinking core model with a shape of sphere, the first leaching reaction was determined by chemical reaction mechanism. Generally, the solubility of pure REEs decreases with the increase of leaching temperatures in sulfuric acid, but REE slag was oppositely increased with increasing temperatures. It occurs because the ash layer included in the slag is affected as a resistance against the leaching. By using the Arrhenius expression, the apparent activation energy of the first chemical reaction was determined to be $9.195kJmol^{-1}$. In the second stage, the leaching rate is determined by the ash layer diffusion mechanism. The apparent activation energy of the second ash layer diffusion was determined to be $19.106kJmol^{-1}$. These relative low activation energy values were obtained by the existence of unreacted ash layer in the REE slag.