• Title/Summary/Keyword: Ore minerals

Search Result 354, Processing Time 0.018 seconds

Study on Revision of Minerals HSK Code of Korea (한국의 광산물 HSK Code 개정방안 연구)

  • Lee, Hwa Suk;Kim, Yu Jeong
    • Mineral and Industry
    • /
    • v.27
    • /
    • pp.8-15
    • /
    • 2014
  • In this study, a proposal for revision of HSK Code was established on legally designated minerals and national stockpile minerals. It is difficult to exactly identify trade balances of minerals, such as lithium ore, rare earth ore, serpentine, kidney stone in legally designated minerals and ingot of indium, ferro-tungsten, ingot of antimony, granule of selenium, gallium, lanthanum oxide, cerium carbonate in national stockpile minerals because HSK Codes of them were not allocated separately. Furthermore, specific use, standard, component, type of products cannot be exactly identified in current HSK Code system. Therefore, it is makes rule to separately manage minerals which were managed by government such as legally designated minerals and national stockpile minerals. However, a proposal for revision of HSK Code system was established to comply with international standard(HS Code) and the items over a certain size(amounts : over 50 mil.$, volumes : over 5000 ton) were selected as revised subjects. Moreover hierarchies between HSK Codes were considered.

  • PDF

Geology and Ore Deposits of Bupyong Lead-Silver Mine (부평은연광산(富平銀鉛鑛山)의 지질(地質)과 광상(鑛床))

  • Shin, Myeong Sik
    • Economic and Environmental Geology
    • /
    • v.3 no.3
    • /
    • pp.177-186
    • /
    • 1970
  • Bupyong lead-silver mine is located at outskirt of Inchon, a harbor city on the Yellow Sea about 40 km due west of Seoul. The geology of the area is composed of gneisses of pre-Cambrian age, rhyolite of Jurassic to Cretaceous age which extruded over the gneisses and late Cretaceous granite. Small diabasic dike is observed only in the underground. The contact plane between overlying rhyolite and underlain gneiss is sinuous and generally pitches about $30^{\circ}{\sim}40^{\circ}$ toward east. Conjugate joints and fissures are well developed in the rhyolite striking generally north-southward. Three ore bodies are being exploited and three more are under prospecting. These ore bodies range from few tons of hundred thousand to million tons in reserve. These ore bodies occur exclusively in the rhyolite along joints as network and/or desseminated type. The lower limit of ore bodies is always delineated at about 20~30m above the gneiss which might be indicative of ore genesis that has not been clearly explained so far. Two hypothesis on ore genesis could, however, be considered: firstly lithologic difference in the rhyolite might be a manifestation of different flows along which ore solution ascended and replaced along joints; secondly diabasic dike has acted as ore bringer since the dike contains considerable amount of silver, lead and zine. Ore minerals are galena and native silver accompanied by pyrite, argentite, pyragyrite and magnetite. It is believed that pyritization took place in advance to main mineralization, and ore deposit is classified as meso- to epi-thermal type.

  • PDF

Geology and Ore Deposits in the Haman-Kunbuk Copper District (함안군북지구(咸安郡北地區)의 지질(地質)과 동광상(銅鑛床))

  • Moon, Chung Uk;Kim, Myung Whan;Lee, Ji Hern;Choi, Chung Jung
    • Economic and Environmental Geology
    • /
    • v.3 no.2
    • /
    • pp.55-73
    • /
    • 1970
  • The district investigated covers the central and southern portions of the Uiryong Quadrangle amounting to $40km^2$ in area and is bounded approximately by geographical coordinates of $128^{\circ}$ 28' $40^{{\prime}{\prime}}{\sim}128^{\circ}$ 24' 25"E in longitude and $35^{\circ}10{\prime}{\sim}35^{\circ}14^{\prime}06^{{\prime}{\prime}}N$ in latitude. The purpose of this investigation was to provide basic information in drawing up a comprehensive development plan of the copper ore deposits known to exist in the HamanKumbuk district with special emphasis given to the ascertainment of geological and paragenetic characteristics. The area consists chiefly of shale, sandy shale and chert, all belong to Kyongsang System of Cretaceous age. Intruded into these rocks are andesite, granodiorite, basic dikes, and acidic dikes. The mineralization which took place in the area, consists of mostly fissure-filling vein deposits, numbering several tens, with varying magnitudes. The fissures and shear zones created in rocks, such as chert and granodiorite, hosted the deposition of mineralizing vapors and/or hydrothermal solutions along their openings. The strike lengths of these veins vary from 50 to 600 meters in extension and 0.1 to 3 meters in width. Although the degree of fluctuation in width is great, it averages 0.3m. The stuctural patterns, which apparently affected the deposition of veins, are fissure patterns, trend NS to $N30^{\circ}W$, and steep-pitching tension fractures as well as normal fault pattern. Ore minerals associated with vein matters are primarily chalcopyrite and small amounts of scheelite, cobaltiferous arsenopyrite, and gold and silver intimately associated with sulphide minerals. Associated with these ore mineral are pyrite, pyrrhotite, magnetite, specularite and arsenopyrite. Gangue minerals noted are quartz, calcite, chlorite, tourmaline and hornblende. In terms of the compositions of associated minerals, the vein deposits in the district could be grouped under the following four categories: 1. Pyrrhoitite, Arsenopyrite, Gold and Silver Bearing Copper Vein (Type I) 2. Calcite-Scheelite-Copper Vein (Type II) 3. Magnetite-Pyrite-Copper Vein (Type III) 4. Tourmaline Copper Vein (Type IV) Of the four types, the first and the fourth are presently yielding relatively higher grades: of copper ores and concentrates. The estimated ore reserves total some 222,000 metric tons with the following breakdown in terms of metal contents: Name of Mines Au(g/t) Ag(g/t) Cu(%) Reserves(M/T) Kunbuk 15.92 78.69 6,074 60.498 Cheil Kunbuk - - 1.040 60,847 Haman - - 2.688 101,204 222,549 As rehabilitation of old workings and/or exploration of veins at depth proceed, additional estimation of ore reserves may become apparent and necessary. With regard to the problem of beneficiation and upgrading of low-grade ores in the district, it would be advisable to make decisions on location, treating capacity and mill flowsheet after sufficient amount of exploration is completed as suggested in the report.

  • PDF

Petrography of Hongcheon Fe-REE Deposit (홍천 철-희토류광상의 암석기재학)

  • 이한영;박중권;황덕환
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.90-102
    • /
    • 2002
  • The studied Fe-REE ore consists of magnetite, ankerite, siderite, magnesite and strontianite as the major constituent, and monazite, columbite, fergusonite, apatite, aegirine-augite, Na-amphibole, pyrite, chalcopyrite, sphalerite, molybdenite and barite as accessaries. Wall rock of ore deposits is replaced to fenite due to Na-metasomatism and mainly consists of sugary albite and Na-amphibole. Monazite $Ce_{0.49}La_{0.31}Pr_{0.14}Nd_{0.03}Gd_{0.03})PO_4$ is the main mineral for REE deposit and shows myrmekitic intergrowth with strontianite $Ca_{0.02-0.16}Sr_{0.84-0.98}CO_3$ and is corroded by carbonate minerals. Mineral forming sequence can be divided into early and late periods by the development of microfractures. The early period minerals such as magnetite, ankerite, magnesite, monazite and apatite show well developed networks of microfractures due to cataclastic deformation caused by enriched $CO_2$ gas in melts during emplacement. The late minerals of columbite, fergusonite, siderite molybdenite, chalcopyrite and sphalerite formed after the brecciation event and have little micro-fractures. Ankerite, magnesite, monazite, strontianite, barite and pyrite seem to be formed continuously from the ealy to the late period since they show textures both with well developed fractures and also with little fractures. Mineral chemistry, mineral assemblages such as various carbonate minerals, magnetite, REE minerals of monazite and fergusonite, Sr mineral of strontianite, and Nb minerals of columbite, myrmekitic texture of monazite and ankerite, and well developed fenite along ore deposits observed from this studied area strongly indicate that this Hongcheon Fe-REE ore deposits are formed from carbonatitic melt and its rock type is late differentiated Fe-carbonatite or ankerite-carbonatite.

On the Prospecting Plans of Mulkum Iron Mine Viewed by the Character and Mode of Occurrence of Ore bodyies (물금철산의 광체발달 양상과 그에 따른 탐광계획)

  • Kim, Seon Eok;Kang, Yang Pyeong
    • Economic and Environmental Geology
    • /
    • v.2 no.1
    • /
    • pp.13-33
    • /
    • 1969
  • The Mulkum mine, located in Mulkum-myon, Yangsan-Kun, Kyeongsang Province, is one of the biggest iron mine in Korea. The geology of this mine and its vicinity consists of Chusan andesitic rocks and Datae-dong andesite porphyry of the Kyeongsang System which were intruded by biotite granite widely distributed near the vicinity of Mulkum-ni. The ore deposits, embedded in Dotae-dong andesite porphyry, are fissure-filling vein type in origin. Up to present ore bodies of Main vein, No. 2 vein, Eastern No. 1, 2 vein and Western No. 1 vein are exploited. Generally the veins strike N 10-25 E and dip to 60-90 SE. The proved length of vein is more than 500 meters and its depth 150 meters in Main vein with 3-4 meters of thickness in average. Ore minerals are mainly magnetite and locally associated with small amounts of hematite, sphecularite and chalcopyrite. Gangue minerals are quartz, epidote, chlorite, pyroxene, and garnet, etc. The modes of occurrence of vein are as follow; 1. Branching and parallel vein patterns are observed around main shaft in -1 level. 2. Multiple cymoid loops and subrectangular vein patterns are observed around main shaft in -2 level. 2. Single vein patterns are observed in -3 and -5 level. The ore-shoots plunge northeasterly about 20-30 degrees. In conclusion, the tectonically fractured zone belongs to the poorly mineralized zone and shoots are formed as single vein type. The general trends of one-shoots must be applied the prospecting of the deep-seated ore body in the deposits.

  • PDF

On the Genesis of Okbang Tungsten Deposits (옥방(玉房) 중석광상(重石鑛床)의 성인(成因)에 관(關)한 연구(硏究) -특(特)히 남부광체(南部鑛體)에 대(對)하여-)

  • Youn, Jeung Su
    • Economic and Environmental Geology
    • /
    • v.12 no.4
    • /
    • pp.181-195
    • /
    • 1979
  • The Nambu orebodies of the Okbang tungsten mine are hosted in the Precambrian amphibolite and Weonnam formation. These orebodies can be classified into two types; The scheelite-bearing ore vein occurring in the amphibolite (the Nambu 1, 2 adits) and tungsten-bearing quartz vein along the contact between the amphibolite and the Weonnam formation (the Young-ho, -1, -2, -3 levels). The scheelite-bearing ore vein in the amphilbolite is discontinuous, narrow, and highly irregular in geometry, occurring only within the amphibolite with which of the vein is graduational. Based on these feature of the mode of occurrence, the origin of this ore type might be attributed to a potential segregation of tungsten ore fluid in situ from hornblenditic basic magma of the host rock. Tungsten-bearing quartz vein, however, is considered to have deposited along the N30-60E trending fractures as a later hypothermal vein after the hornblendite was emplaced. The principal ore mineral is scheelite with minor amount of wolframite, and the gangue minerals are quartz, and small amounts of fluorite, pyrrhotite, chalcopyrite and calcite. Fluid inclusion study of minerals from the Nambu orebody reveals that the fluids in fluorite of the scheelite-bearning ore vein attained a temperature range of $208{\sim}256^{\circ}C$ and those in quartz from the tungsten-bearing quartz vein a temperature range of $220{\sim}357^{\circ}C$. The real formation temperatures can be somewhat higher than filling temperatures, if pressure correction is made. Chemical analysis of 8 amphibolitc samples on major and some trace elements indicate that the amphibolite is igneous origin. On a Niggli diagram (al-alk)versus c, the analytical values are plotted on an igneous field, and on a Niggli diagram mg versus c they follow a karroo igneous trend line. According to the Ba, Cr, and Ni versus Niggli mg plots suggested by Leake (1964), Okbang amphibolite fall outside a pelitic field and compare favorably with his plots form ortho-amphibolites. Analitical values of $MoO_3$ of 8 samples of scheelite minerals from the Nambu orebody indicate that the tungsten-bearing quartz vein (type n) of Nambu orebody shows a range from 1. 69% to 4.38% which is higher than 0.94%~3.25% $MoO_3$ for the scheelite-bearing ore vein (type I). This fact indicates that the type II was deposited in a lower $fO_2/higher$ $fO_2$ environment and under lower temperature than the type I. Analysis of major components $WO_3$, MnO, and FeO of 6 samples of wolframite from the type II veins revealed that they contain 73.35~76.2% $WO_3$, 7.94~11.63% MnO, and 10.53~14.82% FeO. MnO/FeO ratios of wolframite shows the range of 0.85~1.17 which suggests a slightly higher temperature type of deposits than other major tungsten deposits in the country.

  • PDF

A Mineralogical Study of the Skarn Minerals from the Shinyemi Lead-Zinc Ore Deposits, Korea (신예미(新禮美) 연(鉛)-아연광상산(亞鉛鑛床産) 스카른광물(鑛物)의 광물학적(鑛物學的) 연구(硏究))

  • Kim, Kyu Han;Nakai, Nobuyuki;Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.14 no.4
    • /
    • pp.167-182
    • /
    • 1981
  • Skarn silicates from the Shinyemi lead-zinc ore deposits can be distinguished as following three mineral assemblages: 1) garnet-pyroxene-phlogopite-wollastonite assemblages, 2) garnet-pyroxene assemblages, 3) garnet-epidote assemblages The assemblages are considered to be related with occurrences and kindes of ore minerals, and stage of mineralization in the deposits. Microprobe analyses of some garnets from the deposits show strong chemical zoning which is due to the changing equilibrium condition during growth of garnet crystal. Depositional condition of ore deposits and place of the ore-related igneous rock are discussed in the light of chemical composition of garnet and occurence of skarns in the Shinyemi.

  • PDF

Mineralogy and Genesis of the Pyoungan and Daeheung Talc Deposits in Ultramafic Rocks, the Yoogoo Area (초염기성암 기원의 평안 및 대흥활석광상의 성인과 광물화학)

  • Yun, Sang Pil;Moon, Hi-Soo;Song, Yungoo
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.131-145
    • /
    • 1994
  • The Daehung and Pyeongan talc mines are located in the Yoogoo area, Chungcheongnam-Do. These deposits occur as the complex vein type in the ultramafic rocks which intruded Precambrian gneiss. The talc ore formed from sepentinitt: originated from ultramafic rocks but some of those from hornblende gneiss. The talcification processes were considered here on the basis of the mineral assemblages, paragenesis, and geochemistry. It appears that there are five processes in talcification ; serpentine$\rightarrow$talc, phlogopite$\rightarrow$chlorite$\rightarrow$talc, phlogopite$\rightarrow$talc, hornblende$\rightarrow$chlorite$\rightarrow$talc, and hornblende$\rightarrow$talc. Among them, the most dominant alteration path is serpentine to talc in these deposits. EPMA data suggest that there might be interstratified minerals were in between parent mineral and talc such as serpentine and talc, and phlogopite and talc. It can be found that tremolite exists in between the inner and outer most part of talcified serpentinite blocks coated with phlogopite. Some of tremolites has been altered to talc. The quartz veins and carbonate minerals were found in the talc ore zone. It indicates that the hydrothermal solution played an important role in talcification. The hydrothermal alteration occured after sepentinization. Ore zones can be divided into two zones; talc-serpentine zone preserving a pseudormorph of olivine (mesh texture) and talc-phlogopite zone showing talcification from phlogopite directly or through chlorite. It can be concluded that the formation of major talc ore body was due to talcification of serpentinite and phlogopite by hydrothermal solution. A nature of hydrothermal solution was relatively pure water at the beginning of serpentinization, and was getting richer in silica composition. There was a large amount influx of K and AI with hydrothermal solution in the later stage, and increased $P_{CO_{2}}$ also. It suggests that phlogopite formed in later stages as a secondary mineral. So, the major part of the talc ore body was formed from one parents rocks, serpentinite originated from ultramafic rocks, by hydrothermal solutions at several times.

  • PDF

Ore Minerals and Fluid Inclusions Study of the Kamkye Cu-Pb-Zn-Au-Ag Deposits, Repubulic of Korea (감계 동(銅)-연(鉛)-아연(亞鉛)-금(金)-은광상(銀鑛床) 광석광물(鑛石鑛物)과 유체포유물(流體包有物) 연구(硏究))

  • Lee, Hyun Koo;Kim, Sang Jung
    • Economic and Environmental Geology
    • /
    • v.28 no.1
    • /
    • pp.9-17
    • /
    • 1995
  • The Kamkye Cu-Pb-Zn-Au-Ag deposits occur as quartz veins that filled fault-related fractures of NW system developed in the Cretaceous Gyeongsang basin. Three major stages of mineral deposition are recognized: (1) the stage I associated with wall rock alteration, such as sericite, chlorite, epidote and pyrite, (2) the early stage II of base-metal mineralization such as pyrite, hematite, and small amounts of sphalerite and chalcopyrite. and the middle to late stage II of Cu-As-Sb-Au-Ag-S mineralization, such as sphalerite, chalcopyrite, galena with tetrahedrite, tennantite, pearceite, Pb-Bi-Cu-S system, argentite and electrum. (3) the stage III of supergene mineralization, such as covellite, chalcocite and malachite. K-Ar dating of alteration sericite is a late Cretaceous ($74.0{\pm}1.6Ma$) and it may be associated with granitic activity of nearby biotite granite and quartz porphyry. Fluid inclusion data suggest a complex history of boiling, cooling and dilution of ore fluids. Stage II mineralization occurred at temperatures between 370 to $220^{\circ}C$ from fluids with salinities of 8.4 to 0.9 wt.% NaCl. Early stage II($320^{\circ}C$, 2.0 wt.% NaCl) may be boiled due to repeated fracturing which opened up the hydrothermal system to the land surface, and which resulted in a base-metal sulfide. Whilst the fractures were opened to the surface, mixing of middle-late stage II ore fluids with meteoric waters resulted in deposition of Cu-As-Sb-Au-Ag minerals from low temperature fluids(${\leq}290^{\circ}C$). Boiling of ore fluids may be occured at a pressure of 112 bar and a depth of 412 m. Equilibrium thermodynamic interpretation of sphalerite-tetraherite assemblages in middle stage II indicates that the ore-forming fluid had log fugacities of $S_2$ of -6.6~-9.4 atm.

  • PDF

Mineral Paragenesis and Fluid Inclusions of the Dongbo Tungsten-Molybdenum Deposits (동보(東寶) 중석(重石)-모리브덴 광상(鑛床)의 광물공생(鑛物共生)과 유체포유물(流體包有物))

  • Park, Hee-In;Moon, Sang Ho;Bea, Young Boo
    • Economic and Environmental Geology
    • /
    • v.18 no.4
    • /
    • pp.331-342
    • /
    • 1985
  • The Dongbo tungsten-molybdenum deposits are fissure-filling veins emplaced in granites of late Cretaceous age. Integrated field, mineralogic and fluid inclusion studies were undertaken to illuminate the characters and origin of the ore deposits. Mineral paragenesis is complicated by repeated fracturing, but four distinct depositional stages can be recognized; (I) tungsten-molybdenum minerals-quartz-chlorite stage, (II) iron-oxide and sulfides-quartz stage, (III) iron -oxide-base metal sulfides-sulfosalts-quartz-carbonates stage, (IV) barren rhodochrosite-zeolite stage. Fluid inclusion studies were carried out for stage I quartz and stage III quartz, sphalerite and calcite. Fluid inclusion studies reveals highly systematic trends of homogenization temperature and salinity throughout the mineralization. Ore fluids during stage I were complex, NaCl rich brine and salinity reached values as high as 34.4 weight percent equivalent NaCl, but the later ore fluids were more dilute and reached to 9.7 weight percent equivalent NaCl during stage III. Intermittent boiling of ore fluid during stage I is indicated by the fluid inclusions in stage I quartz. Depositional temperatures and pressures during stage I range from $520^{\circ}C$ to $265^{\circ}C$and from 600 to 400 bars. Homogenization temperatures of the stage III quartz, sphalerite and calcite range from $305^{\circ}C$ to $190^{\circ}C$. Fluid inclusion data from the Dongbo mine are nearly similar to those from other hydrothermal tungsten deposits in the Kyeongsang basin. Depositional temperature and salinity of ore fluids during precipitation of tungsten-molybdenum minerals in Dongbo mine were much higher, but $CO_2$ contents were much lower than those from hydrothermal tungsten-molybdenum deposits of late Cretaceous plutonic association in central parts of Korean peninsula.

  • PDF