• Title/Summary/Keyword: Ore minerals

Search Result 354, Processing Time 0.023 seconds

A Geochemical Study on Ulsan Granite in Relation to Iron Ore Deposits in the Gyeongsang Basin (경상분지내 철광상 관련 울산화강암에 대한 지화학적 연구)

  • Lee, Jae Yeong;Kim, Sang Wook;Kim, Young Ki
    • Economic and Environmental Geology
    • /
    • v.25 no.2
    • /
    • pp.133-143
    • /
    • 1992
  • Ulsan granite is plotted mainly in the region of syeno-granite of the Streckeisen diagram, which consists with those of iron related granites in the area of Kimhae-Mulgum, while Chindong granites and Yucheon-Eonyang granites are plotted in the regions of granodiorite-diorite and monzo-granite, respectively. These granites show a differentiation trend of calc-alkaline magma, and their magmatic evolution from intermediate to acidic rocks is consistant with the general crystallization path of the Cretaceous granitic rocks in the Gyeongsang basin. The difference index (D.I.) is 70~90 for Ulsan granite, which lies between 35~80 of Chindong granites and 85~95 of Yucheon-Eonyang granites. These granites are distinguishable from each other by variation patterns of chemical elements. For instance, there is clear difference in content of some major and trace elements between Ulsan granite and Cu-related Chindong granites: Ulsan granite has high content of K (2.68%) and Ba (636 ppm), and low content of Ca (1.07%), Mg (0.50%) and Sr (185 ppm), whereas Chindong granites has less content of K (1.62%) and Ba (382 ppm), and higher content of Ca (3.75%), Mg (1.42%) and Sr (405 ppm). However, the content of Ulsan granite overlaps partly those of Yucheon-Eonyang granites, which are apparently dividable from Chindong granites. There is an usual trend that Cu content is high in Chindong granites of Cu province and Zn content is higher in Yucheon-Eonyang granites of Pb-Zn province. But it is unusual that Cu and Zn are higher in Ulsan granite (34 ppm, 74 ppm) than in Chindong granites (15 ppm, 22 ppm) and Yucheon-Eonyang granites (14 ppm, 43 ppm). This may be due to the reason that Ulsan granite is productive and Cu-Zn minerals are associated with iron ores. Productive Chindong granites in Haman-Gunbug area and Yuchon-Eonyang granites near ore deposits have higher content of Cu and Zn than Ulsang granite. Therefore, it is expected that chemical variation patterns of granites are applicable to distinguish mineral commodity of ore deposits (iron, copper, or lead-zinc) related with the granites in the Gyeongsasng basin.

  • PDF

Genetic Environments at the Ssangjeon Tungsten-bearing Hydrothermal Vein Deposit (쌍전 함 텅스텐 열수 맥상광상의 생성환경)

  • Sunjin Lee;Sang-Hoon Choi
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.689-699
    • /
    • 2022
  • The Ssangjeon tungsten deposit is located within the Yeongnam Massif. Within the area a number of hydrothermal quartz veins were formed by narrow open-space filling of parallel and subparallel fractures in the metasedimentary rocks as Wonnam formation, Buncheon granite gneiss, amphibolite and/or pegmatite. Mineral paragenesis can be divided into two stages (stage I, ore-bearing quartz vein; stage II, barren quartz vein) by major tectonic fracturing. Stage I, at which the precipitation of major ore minerals occurred, is further divided into three substages (early, middle and late) with paragenetic time based on minor fractures and discernible mineral assemblages: early, marked by deposition of arsenopyrite with pyrite; middle, characterized by introduction of wolframite and scheelite with Ti-Fe-bearing oxides and base-metal sulfides; late, marked by Bi-sulfides. Fluid inclusion data show that stage I ore mineralization was deposited between initial high temperatures (≥370℃) and later lower temperatures (≈170℃) from H2O-CO2-NaCl fluids with salinities between 18.5 to 0.2 equiv. wt. % NaCl of Ssangjeon hydrothermal system. The relationship between salinity and homogenization temperature indicates a complex history of boiling, fluid unmixing (CO2 effervescence), cooling and dilution via influx of cooler, more dilute meteoric waters over the temperature range ≥370℃ to ≈170℃. Changes in stage I vein mineralogy reflect decreasing temperature and fugacity of sulfur by evolution of the Ssangjeon hydrothermal system with increasing paragenetic time.

The Relationship between the Mineral Characteristics and Spectral Induced Polarization for the Core Rock Samples from the Gagok Skarn Deposit (가곡 스카른 광상의 암석시료에 대한 광물특성과 광대역 유도분극 반응과의 관련성)

  • Heo, Seo-Young;Oh, Ji-Ho;Yang, Kyoung-Hee;Hwang, Jin-Yeon;Park, Sam-Gyu
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.351-363
    • /
    • 2012
  • In order to develop the evaluation techniques for the potential sulfide ore reserves, the relationships between the modal vol.%, grain sizes and textural characteristics of the constituent minerals (e.g., sulfides, oxides and skarn minerals) and the Spectral Induced Polarization (SIP) phase differences are examined for the nine rock cores collected from the Gagok Pb-Zn skarn deposit. The Gagok Pb-Zn skarn deposit occurs mainly along the intrusive contact between the Cretaceous granitic rocks and Cambrian Myobong slate and Pungchon limestone. The nine rock cores have been grouped into three showing distinctive SIP phase differences: the highest (Group I), intermediate (Group II) and lowest (Group III). In relation with the modal vol.% of minerals, Group I is characterized by higher pyrrhotite (25-38 vol.%) and amphibole (40-55 vol.%); Group II by intermediate pyrrhotite (7-13 vol.%) and higher garnet (44-68 vol.%); and lower pyrrhotite (1-7 vol.%) and higher pyroxene (24-66 vol.%) stand for Group III. Furthermore, the grains of all the major constituent minerals become smaller from Group I (<5 mm) through Group II (<2.5 mm) to Group III (<1.6 mm). In particular, the pyrrhotite contents and their grain sizes show logarithmic correlation with the SIP phase differences, Although we present here the results solely from nine samples, the systematic interrelations especially for pyrrhotite indicate the potential ability of SIP measurements as a new mine-evaluation technique for the sulfide ore reservoir.

Isotope Geochemistry of Uranium Ore Deposits in Okcheon Metamorphic Belt, South Korea (옥천변성대내(沃川變成帶內)에 분포(分布)하는 우라늄광상(鑛床)의 동위원소(同位元素) 지구화학적(地球化學的) 연구(硏究))

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.163-173
    • /
    • 1986
  • Black and graphite slates from the Okcheon metamorphic belt contain enriched values of uranium (average 200~250ppm) and molybdenum (average 150~200ppm). Uranium mineralization is closely associated with quartz and sulfide veinlets which are formed diagenetically in graphite slate. The uranium minerals were concentrated in outer part of graphite nodules. The ${\delta}^{13}C$ values of organic carbon from the metasediments including uranium bearing graphite slate range from -15.2 to -26.1‰ with a mean of -23.5‰. Meanwhile, ${\delta}^{13}C$ values of coal and coaly shale from some Paleozoic coal fields of South Korea vary from -19.4 to -23.9‰ with an average of -22.5‰. Isotopic compositions of vein calcite in uranium bearing slate range from -13.4 to -15.4‰ in ${\delta}^{13}C$ and +11.3 to +15.1‰ in ${\delta}^{18}O$ could indicate a reduced organic carbon source isotopically exchanged with a graphite of biogenic origin. Metamorphic temperature determined by a calcite-graphite isotope geothermometer was 383~$433^{\circ}C$ which corresponded to greenschist facies by Miyashiro (1973) and is consistent with metamorphic facies estimated by mineral assemblages (Lee, et al., 1981, and Kim, 1971). The fixation of uranyl species by carbonaceous matter in marine epicontinental environment, and remobilization of organouranium by diagenetic processes have attributed to the enrichment of uranium and heavy metals in the graphite slate of Okcheon metamorphic belt.

  • PDF

Reviews on Natural Resources in the Arctic: Petroleum, Gas, Gas Hydrates and Minerals

  • Yoon, Jong-Ryeol;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.23 no.1
    • /
    • pp.51-62
    • /
    • 2001
  • The Arctic consists of numerous sedimentary basins containing voluminous natural resources and two of the world's major oil and gas producing areas. The western Siberia Basin in the Arctic region has the largest petroliferous province with an area of 800 ${\times}$ 1,200 km and produces more than 60% of total Russian oil production. The North Slope of Alaska produces about 20% of the U.S. output, i.e., 11% of the total U.S. consumption. Being small compared to those regions, the Canadian Northwest Territories and the Pechora Basin in Russia produce only fair amount of oil and natural gas. There are also many promising areas in the northern continental shelf of Russia. In addition to Russia, Svalbard and Greenland have been investigated for oil and gas. Gas hydrates are widespread in both permafrost regions and arctic continental shelf areas. The reserves of gas hydrates in the Arctic Ocean are about 20${\sim}$32% of total estimated amounts of gas hydrates in the world ocean. Mineral mining is well developed, especially in Russia. The major centers are located around the Kuznetsk Basin and Noril'sk. They are major suppliers of gold, tin, nickel, copper, platinum, cobalt, iron ore, coal as well as apatite. There are also some minings of lead-zinc in Alaska and Arctic Canada.

  • PDF

Nanostructural Study of Apatite Film Biomimetically Grown in SBF (Simulated Body Fluid) (생체유사환경에서 성장된 아파타이트 층의 나노구조 연구)

  • Kim, Joung;Lee, Kap-Ho;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.15 no.11
    • /
    • pp.690-696
    • /
    • 2005
  • The ultrastructure ore of a nanostructured apatite film nucleated from solution was studied to gain insights into that of bone minerals which is the most important constituent to sustain the strength of bones. Needle-shaped apatite crystal plates with a bimodal size distribution $(\~100\;to\;\~1000 nm)$ were randomly distributed and they were found to grow parallel to the c-axis ([002]), driven by the reduction of surface energy. Between these randomly distributed needle-shaped apatite crystals which are parallel to the film, apatite crystals (20-40nm) with the normal of the grains quasi-perpendicular to the c-axis were observed. These observations suggest that the apatite film is the interwoven structure of apatite crystals with the c-axis parallel and quasi-perpendicular to the fan. In some regions, amorphous calcium phosphate, which is a precursor of apatite, was also observed. In the amorphous phase, small crystalline particle with the size of 2-3 nm were observed. These particles were quite similar, in size and shape, to those observed in the femoral trabecular bone, suggesting the nucleation of apatites by a biomimetic process in vitro is similar to that in vivo.

Leaching Properties of Water-Soluble Hexavalent Chromium by Manufacturing Condition of Cement Clinker (클링커 제조 조건에 따른 수용성 6가 크롬 용출 특성)

  • Lee, Jong-Kyu;Chu, Yong-Sik;Song, Hun
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.679-684
    • /
    • 2011
  • One of the trace constituents included in cement clinker, chromium, has become prominent and highly noticed lately as a social issue both inside and outside of this country because it affects the human body negatively. The purpose of the present study was to investigate leaching properties of water-soluble hexavalent chromium by different manufacturing conditions of cement clinker. Raw materials were prepared to add different $SiO_2$, $Al_2O_3$ and $Fe_2O_3$ sources. After the raw materials, such as limestone, sand and clay, iron ore was pulverized and mixed, and the raw meal was burnt at $1450^{\circ}C$ in a furnace with an oxidizing atmosphere. Leaching of soluble hexavalent chromium showed a tendency to decrease with an increasing LSF and IM. However, leaching of soluble hexavalent chromium increased with an increasing S.M. Alkali contents of iron source minerals is closely related to the leaching properties of soluble hexavalent chromium. Green sludge has the highest content of alkali added; leaching of water-soluble hexavalent chromium was mostly high. In order to reduce the water-soluble hexavalent chromium in cement, reducing the alkali content in raw materials is important.

KATSTIC SINKHOLE SEDIMENTS OF DOLOSTONE IN THE UPPER MIDWEST'S DRIFTLESS AREA, USA

  • Oh, Jong-woo
    • Journal of the Speleological Society of Korea
    • /
    • v.34 no.35
    • /
    • pp.78-104
    • /
    • 1993
  • Analysis of one sinkhole, the Dodgeville sinkhole, developed in Ordovician dolostones in the Driftless Area of Wisconsin in the Upper Midwest'd Driftless Area reveals homogenous clayey sediment fills reflecting a range of dissolutional processes during the Quaternary or Pre-Quaternary. Granulometric analysis, graphical moments statistics, carbonate minerals, ana sand grain lithology were used to differentiate sinkhole sediment sources and modes of accumulation. Sediments in the dolostone sinkholes developed by dissolution. Sediments contain two major types of sediments : residual redish clay( autogenic sediments) and aeolian silt (allogenic sediments). The massive clay is generated from the weathered dolostone bedrocks as a in situ materials. The loessial silt is mostly derived from transportation of the surrounding surface materials, with some evidences of penetrated deposition. Unlike the collapsed sandstone sinkholes (Oh et al., 1993), dolostone sinkholes reveal homogenous, autogenic clay materials, and a geochemical composition indicative of in situ autogenic karstification. Dolostone sinkhole si1ts (26.9%) and sands (34.9%) are derived from weathered Plattevi1le-Galena dolostones, and contain high carbonate(37.5%), chert (57.2%) and lead ore (3%). Graphical moments statistics for sorting, skewness, and kurtosis indicate that sand grains from dolostones were derived entirely from local bedrock by in situ dissolution. Upper sinkhole sediments are pedagogically very young as carbonate is unleashed. Materials of the sinkhole sediment are definitely inherited from internal dolostones by dissolution and weathering, because not only a granulomatric comparison of dolostone and sandstone sediments demonstrates that they have heterogeneous paticle size distributions, but also 1ithologic analyses displays they differ completely.

  • PDF

Contrasting Styles of Gold and Silver Mineralization in the Central and Southeastern Korea (한국 중부와 동남부지역 금·은광화작용의 성인적 특성)

  • Choi, Seon-Gyu;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.587-597
    • /
    • 1995
  • Two distinct precious-metal mineralizations actively occur at central and southeastern Korea which display consistent relationships among geologic, geochemical and genetic environments. A large number of preciousmetal vein deposits in the central Korea occur in or near Mesozoic granite batholiths elongated in a NE-SW direction. Whereas, gold and/or silver deposits in the southeastern Korea occur within Cretaceous volcanic and sedimentary rocks. However, most of the precious-metal deposits in the southeastern Korea show characteristics of the silver-rich deposits than the gold-rich deposits in the central Korea. Two epochs of main igneous activities are recognized: a) Jurassic Daebo igneous activity between 121 and 183 Ma, and b) Cretaceous Bulgugsa igneous activity between 60 and 110 Ma. Precious-metal mineralization took place between 158 and 71 Ma, coinciding with portions of the two magmatic activities. Contrasts in the style of mineralization, together with radiometric age data and differences in geologic settings reflect the genetically variable natures of hydrothermal activities from middle Jurassic to late Cretaceous time. The compilation and re-evaluation of these data suggest that the genetic types of hydrothermal precious-metal vein deposits in the central and southeastern Korea varied with time. The Jurassic and early Cretaceous mineralizations are characterized by the Au-dominant type, but tend to change to the Au-Ag and/or Ag-dominant types at late Cretaceous. The Jurassic Au-dominant deposits commonly show several characteristics; prominent associations with pegmatites, simple massive vein morphologies, high fmeness values in ore-concentrating parts, and a distinctively simple ore mineralogy such as Fe-rich sphalerite, galena, chalcopyrite, Au-rich electrum, pyrrhotite and/or pyrite. The Cretaceous precious-metal deposits are generally characterized by some- features such as complex vein morphologies, low to medium fmeness values in the ore concentrates, and abundance of ore minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver. Mineralogical and fluid inclusion studies indicate that the Jurassic Au-dominant deposits in the central area were formed at the high temperature (about $300^{\circ}$ to $500^{\circ}C$) and pressure (about 4 to 5 kbars), whereas mineralizations of the Cretaceous Au-Ag and Ag-dominant deposits were occurred at the low temperature (about $200^{\circ}$ to $350^{\circ}C$) and pressure (<0.5 kbars) from the ore fluids containing more amounts of less-evolved meteoric waters.

  • PDF

Mineralogical and Geochemical Characteristics and Designation of Key Beds for the Effective Surveys in the Jeonnam Clay Deposits (전남일원 점토광상의 광물 및 지화학적 특성과 효과적 탐사를 위한 건층의 선정)

  • Yoo, Jang-Han;Koh, Sang-Mo;Moon, Dong-Hyuk
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.265-278
    • /
    • 2011
  • Clayey ores of the Jeonnam province mainly consist of pyrophyllite (monoclinic), kaolinite (1T), and minor amounts of quartz, muscovite, and feldspars. Mineralogical studies revealed that two kinds of clay minerals were mainly produced from the volcanic sediments with similar ages and compositions. Kaolinite deposits sometimes contain neither diaspore nor corundum, but alunites are often found in the upper portions of the kaolin ore bodies. On the other hand, corundum and diaspore are commoner in the pyrophyllite deposits than the kaolin deposits. As ages of rock formations are becoming younger, amounts of pyrophyllite and kaolinite are rather radically decreased, and finally disappeared. But muscovite, quartz, and plagioclase feldspars are inclined to be preserved because of weak alteration. Most of clay ore bodies contain purple tuff beds on the uppermost portion, and silicified beds, tuff, and lapillistone are found in an ascending order in the most of clay quarries. Chemical analyses show that higher contents of $Al_2O_3$ might not necessarily be due to the argillization, since some tuffs contain higher $Al_2O_3$ contents originated from feldspars. $SiO_2$ contents are fairly higher in the silicified beds than in those of adjacent formations, which might have been introduced from the ore bodies. And $K_2O$ contents are obviously lower than those of $Na_2O$ and CaO in the ores and their vicinities. Ignition losses of some of clays represent much higher contents than those of the ordinary ones because of the sporadic presence of alunite, diaspore and corundum which are accompanied with lots of $SO_4$ and $Al_2O_3$ contents. REE (rare earth element) abundances of most of volcanics and clay ores show rather higher LREE (light rare earth elements) contents, and represent small to moderately negative Eu anomalies. Though most of ores ususally show milky white color, fine-grained and well bedded formations which could be easily discernible in the most of outcrop. But more distinct characteristics are desirable where rather massive ore bodies exist. Purple tuffs and silicified beds above the ore bodies would be useful as marker horizons/key beds since they have rather obvious lithology, extension and mineralogy than those of other adjacent formations.