• Title/Summary/Keyword: Ordinary kriging

Search Result 104, Processing Time 0.034 seconds

Measurement of PM2.5 Concentrations and Comparison of Affecting Factors in Residential Houses in Summer and Autumn (여름과 가을의 주택실내 초미세먼지(PM2.5) 농도 측정 및 영향요인 비교)

  • Dongjun Kim;Gihong Min;Jihun Shin;Youngtae Choe;Kilyoong Choi;Sang Hyo Sim;Wonho Yang
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.1
    • /
    • pp.16-24
    • /
    • 2024
  • Background: Indoor PM2.5 concentrations in residential houses can be affected by various factors depending on the season. This is because not only do the climate characteristics depend on the season, but the activity patterns of occupants are also different. Objectives: The purpose of this study is to compare factors affecting indoor PM2.5 concentrations in apartments and detached houses in Daegu according to seasonal changes. Methods: This study included 20 households in Daegu, South Korea. The study was conducted during the summer (from July 10 to August 10, 2023) and the autumn (from September 11 to October 9, 2023). A sensor-based instrument for PM2.5 levels was installed in the living room of each residence, and measurements were taken continuously for 24 hours at intervals of one minute during the measurement period. Based on the air quality monitoring system data in Daegu, outdoor PM2.5 concentrations were estimated using ordinary kriging (OK) in Python. In addition, the indoor activities of the occupants were investigated using a time-activity pattern diary. The affecting factors of indoor PM2.5 concentration were analyzed using multiple regression analysis. Results: Indoor and outdoor PM2.5 concentrations of the residences during summer were 15.27±11.09 ㎍/m3 and 11.52±7.56 ㎍/m3, respectively. Indoor and outdoor PM2.5 concentrations during autumn were 13.82±9.61 ㎍/m3 and 9.57±5.50 ㎍/m3, respectively. The PM2.5 concentrations were higher in summer compared to autumn both indoors and outdoors. The primary factor affecting indoor PM2.5 concentration in summer was occupant activity. On the other hand, during the autumn season, the primary affecting factor was outdoor PM2.5 concentration. Conclusions: Indoor PM2.5 concentration in residential houses is affected by occupant activity such as the inflow of outdoor PM2.5 concentration, cooking, and cleaning, as found in previous studies. However, it was revealed that there were differences depending on the season.

Estimation of Distribution of the Weak Soil Layer for Using Geostatistics (지구통계학적 기법을 이용한 연약 지반 분포 추정)

  • Jeong, Jin;Jang, Won-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1132-1140
    • /
    • 2011
  • When the offshore wind power plant is planned to construct, it is important for the wind farm site to figure out the distribution of the weak soil layers that might cause subsidence by the impact of the external moment from the wind plant's load and an oscillating wind load. Coring test is the optimistic method to figure out weak soil layers, but this method have some problem such as condition of the in-situ or economical limitation. In order to make up for the weak points in coring test, the researches using the geostatistics methods is actually done. In this study, setting a fixed coastal area that offshore wind plants construct firstly and Estimation of distribution on the thickness of the weak soil layer through the geostatistic method is conducted. The weak soil layer is sorted by result of the Standard penetration test, geostatistic method is used to ordinary kring and sequential gaussian simulation and compared to both method's result. As a results of study, we found that both methods show similar estimations of deep weak soil layer and we could evaluate quantitatively the uncertainty of the result.

Application of Gradient-Enhanced Kriging to Aerodynamic Coefficients Modeling With Physical Gradient Information (물리적 구배 정보를 이용한 공력계수 모형화를 위한 GE 크리깅의 적용)

  • Kang, Shinseong;Lee, Kyunghoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.175-185
    • /
    • 2020
  • The six-DOF aerodynamic coefficients of a missile entail inherent physical gradient constraints originated from the geometric characteristics of a cylindrical fuselage. To effectively adopt the freely available gradient information in aerodynamic coefficients modeling, this research employed gradient-enhanced (GE) Gaussian process. To investigate the accuracy of aerodynamic coefficients predicted with gradients information, we compared two Gaussian-process-based models: ordinary and GE Gaussian process models with and without gradient information, respectively. As a result, we found that GE Gaussian process models were able to comply with imposed gradient information and more accurate than ordinary Gaussian process models. However, we also found that GE Gaussian process modeling cannot handle gradient information continuously and ends up with more samples due to additional gradient information.

Analysis of Rock Slope Stability by Using GIS in Mt. Keumsu Area (지구정보시스템을 이용한 금수산일대의 암반사면 안정성 평가)

  • 배현철
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.77-88
    • /
    • 2000
  • The goal of this study is to assess the spatial distribution of natural slopes and cutting slopes under would-be development. For this goal, a quantitative slope stability analysis method using GIS integrated with a computer program was developed. Through field investigations, the discontinuity parameters were collected such as orientation of discontinuity, persistence, spacing, JRC, JCS, and water depth. The distributions were interpolated from the ordinary kriging method in ARC/INFO GIS after variogram analysis. The layers showing all parameters needed for limit equilibrium analysis were constructed. The final layer using GIS works composed of 162,352 polygons, that is, unit slopes. The rock slope stability analysis program was coded by C++ language. This program can calculate geometrical vectors related to rock block failures using input orientation data and direction and dimension of strength to occur failure. Also, this can calculate shear strength of joints through empirical equations and quantitative factors of safety. This methodology was applied to the study area which is located in Jaecheon city and Danyang-gun of the northeastern Keumsu is about 135$km^2$. As a result, the study area was entirely stable but unstable, that is, factor of safety less than 1.0dominantly at the slopes near Keumsil, Daejangri, Keumsungmyun and Sojugol, Mt. Dongsan, Juksongmyun by the natural slope stability analysis. Assuming the cutting slope showing the same direction immediate, and quantitative analysis of factors of safety for a regional area could be conducted through GIS integrated with a computer program of limit equilibrium.

  • PDF

The Development of Technique for the Visualization of Geological Information Using Geostatistics (지구통계학을 활용한 지반정보 가시화 기법 개발)

  • 송명규;김진하;황제돈;김승렬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.501-508
    • /
    • 2001
  • A graph or topographic map can often convey larger amounts of information in a shorter time than ordinary text-based methods. To visualize information precisely it is necessary to collect all the geological information at design stage, but actually it is almost impossible to bore or explore the entire area to gather the required data. So, tunnel engineers have to rely on the judgement of expert from the limited number of the results of exploration and experiment. In this study, several programs are developed to handle the results of geological investigation with various data processing techniques. The results of the typical case study are also presented. For the electric survey, eleven points are chosen at the valley to measure the resistivity using Schlumberger array. The measured data are interpolated in 3-dimensional space by kriging and the distribution of resistivity are visualized to find weak or fractured zone. The correlation length appears to be around 5 to 20 meter in depth. Regression analyses were performed to find a correlation length. No nugget effect is assumed, and the topographic map, geologic formation, fault zone, joint geometry and the distribution of resistivity are successfully visualized by using the proposed technique.

  • PDF

Development of the parameter maps of the Modified Bartlett-Lewis Retangular Pulse Model for Han River Basin of Korea (한강유역에 대한 Modified Bartlett-Lewis Rectangular Pulse 모형의 매개변수 지도 작성)

  • Kim, Dong-Kyun;Lee, Seung-Oh;Jung, Young-Hoon;Kim, Soo-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.456-456
    • /
    • 2012
  • 한강유역에 위치한 247개의 강우계에서 관측된 강우 자료를 분석하여 Modified Bartlett-Lewis Retangular Pulse Model (MBLRPM)의 매개변수들을 산정하고, 이들의 지도를 작성한 후, 이들의 정확도 및 매개변수들의 시/공간적 변화 유형을 분석하였다. 이를 위한 첫번째 과정으로, 각 강우 게이지에 대해 MBLRPM의 매개변수에 사용되는 통계치 (각 달에 대한 1, 3, 12, 24시간 누적 수준에서의 평균, 분산, 자기 상관계수, 무강우 확률)들을 계산한다. 이 후, 격자화된 한강유역의 각 셀에 대하여 앞서 계산된 강우 통계치를 Ordinary Kriging 공간 보간법을 통하여 할당한다. 이 후, 각 셀에 할당된 강우 통계치를 사용하여 MBLRPM의 매개변수들을 산정하여 각 매개변수들의 지도를 각 달에 대하여 얻는다. 매개변수 지도를 사용하여 MBLRPM에 의해 생성된 강우 데이터들은 관측치의 통계치를 정확성있게 재현하였으며, 시/공간적 경향성을 분석한 결과, 강우세포의 지속기간과 관련된 매개 변수를 제외한 나머지 5개의 매개변수들은 확연한 공간적 경향성을 보인 한 편, 시간적 경향성은 잘 나타나지 않았다. 본 연구 결과는 매개변수 산정이 힘든 MBLRPM의 특성을 극복하게 해주어 가상 강우 생성을 용이하게 함으로써 강우에 영향을 받는 여러 종류의 연구 주제에 대해 불확실성 분석을 할 수 있게 한다는 점에서 의미를 가질 수 있다.

  • PDF

Three-dimensional geostatistical modeling of subsurface stratification and SPT-N Value at dam site in South Korea

  • Mingi Kim;Choong-Ki Chung;Joung-Woo Han;Han-Saem Kim
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.29-41
    • /
    • 2023
  • The 3D geospatial modeling of geotechnical information can aid in understanding the geotechnical characteristic values of the continuous subsurface at construction sites. In this study, a geostatistical optimization model for the three-dimensional (3D) mapping of subsurface stratification and the SPT-N value based on a trial-and-error rule was developed and applied to a dam emergency spillway site in South Korea. Geospatial database development for a geotechnical investigation, reconstitution of the target grid volume, and detection of outliers in the borehole dataset were implemented prior to the 3D modeling. For the site-specific subsurface stratification of the engineering geo-layer, we developed an integration method for the borehole and geophysical survey datasets based on the geostatistical optimization procedure of ordinary kriging and sequential Gaussian simulation (SGS) by comparing their cross-validation-based prediction residuals. We also developed an optimization technique based on SGS for estimating the 3D geometry of the SPT-N value. This method involves quantitatively testing the reliability of SGS and selecting the realizations with a high estimation accuracy. Boring tests were performed for validation, and the proposed method yielded more accurate prediction results and reproduced the spatial distribution of geotechnical information more effectively than the conventional geostatistical approach.

Estimation of Missing Records in Daily Climate Data over the Korean Peninsula (한반도의 과거 기후 데이터 구축을 위한 누락된 기록 추정)

  • Noh, Gyu-Ho;Ahn, Kuk-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.135-135
    • /
    • 2020
  • 우리나라의 기후 자료는 일반적으로 기상청에서 발표하는 종관기상관측(ASOS)과 방재기상관측(AWS), 그리고 북한이 세계기상기구(WMO, World Meteorogical Organization)의 기상통신망(GTS)을 통해 보낸 북한기상관측(NKO)을 사용 할 수 있다. 그러나 이 중 40년 이상의 완전한 관측 자료를 얻을 수 있는 건 ASOS가 유일하지만 공간적인 표현에 한계를 갖고 있다. AWS는 관측소가 많다는 장점이 있지만 관측 기간이 길지 않고 이용 가능한 기간에도 관측이 연속적이지 못한 경우가 많다. NKO는 비록 27개의 관측소가 있지만 많은 데이터가 누락되어 일별 기후자료의 사용에 한계를 갖고 있다. 이러한 미관측 기간이나 관측 자료의 누락은 연속적인 시계열 자료분석을 기반으로 하는 수자원 모델링에 있어서 문제를 야기한다. 본 연구는 1973년부터 2019년까지 47년의 신뢰도 높은 한반도 일일 기후 자료를 구축하기 위해 다양한 방법론을 비교하였다. 추정에 사용한 방법은 총 7개로 EM algorithm for probabilistic principal components (PPCA-EM), Inverse distance weight method (IDWM), Nearest neighbor method (NNM), Multivariate normal copulas (Copula), Elastic net model (Elastic), Ordinary kriging (OK), Regularized principal components with EM algorithm (RPCA-EM)를 살펴보았다. 다양한 형태의 결측치를 가정하여 그 결과값을 비교하였고 이는 Root mean squared error(RMSE), Kling-Gupta efficiency(KGE), Nash-Sutcliffe efficiency(NSE)를 통해 평가하였다. 최종 선택된 방법론을 통하여 한반도 전역을 그리드 기반의 강수 및 최저온도/최고온도의 일별자료로 생성하였다.

  • PDF

Assessment of Regional Seismic Vulnerability in South Korea based on Spatial Analysis of Seismic Hazard Information (공간 분석 기반 지진 위험도 정보를 활용한 우리나라 지진 취약 지역 평가)

  • Lee, Seonyoung;Oh, Seokhoon
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.573-586
    • /
    • 2019
  • A seismic hazard map based on spatial analysis of various sources of geologic seismic information was developed and assessed for regional seismic vulnerability in South Korea. The indicators for assessment were selected in consideration of the geological characteristics affecting the seismic damage. Probabilistic seismic hazard and fault information were used to be associated with the seismic activity hazard and bedrock depth related with the seismic damage hazard was also included. Each indicator was constructed of spatial information using GIS and geostatistical techniques such as ordinary kriging, line density mapping and simple kriging with local varying means. Three spatial information constructed were integrated by assigning weights according to the research purpose, data resolution and accuracy. In the case of probabilistic seismic hazard and fault line density, since the data uncertainty was relatively high, only the trend was intended to be reflected firstly. Finally, the seismic activity hazard was calculated and then integrated with the bedrock depth distribution as seismic damage hazard indicator. As a result, a seismic hazard map was proposed based on the analysis of three spatial data and the southeast and northwest regions of South Korea were assessed as having high seismic hazard. The results of this study are expected to be used as basic data for constructing seismic risk management systems to minimize earthquake disasters.

Reconstruction of the Volcanic Lake in Hanon Volcano Using the Spatial Statistical Techniques (공간통계기법을 이용한 하논화산의 화구호 복원)

  • Choi Kwang-Hee;Yoon Kwang-Sung;Kim Jong-Wook
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.391-403
    • /
    • 2006
  • The Hanon volcano located in the southern pan of Cheju Island, Korea has a wetland in its crater being used as a farmland. Previous researchers presumed this wetland was a maar lake in the past. Based on the seismic refraction method, the wetland sediment layer was estimated between 5 to 14 m deep, which is mostly in accordance with previous researches. However, this shows only the depths at some sites, not representing the whole spatial distribution. This study is an attempt to reconstruct the volcanic lake in Hanon crater by applying the spatial statistical techniques based on the depth information from the seismic survey and known data. The procedure of reconstruction is as follows: First, the depth information from the seismic survey and known data were collected and it was interpolated by IDW and Ordinary Kriging method. Next, with the interpolation map and the present DEM the paleo DEM was constructed. Finally, using the paleo lake level on core data, the boundary of volcanic lake was extracted from the paleo DEM. The reconstructed lake resembles a half-moon in the north of the central scoria cone. It is estimated that the lake was 5 m deep on average and 13 m deep at the deepest point. Although there are slight differences according to the interpolation techniques, it is calculated that the area of the lake was between 184,000 and $190000m^2,$ and its volume approximately $869,760m^3$. Because of the continuous deposition processes after the crater formation, the reconstructed volcanic lake would not indicate an actual lake at a specific time. Nevertheless, it offers a significant clue regarding the inner morphology and evolution of the crater.