• 제목/요약/키워드: Ordinary Portland Cement

검색결과 605건 처리시간 0.029초

고로슬래그 미분말을 사용한 모르터의 기초물성에 대한 연구 (A Study on the Fundamental Properties of Mortar Using Ground Granulated Blast Furnace Slag)

  • 문한영;최연왕;류재석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.19-24
    • /
    • 1992
  • The purpose of this study is to examine ground granulated blast furnace(GGBF) slag produced in the country for concrete additive through physical and chemical alalysis. In this study, mortar using ordinary portland cement a part of which was replaced with GGBF slag is investigated through fundamental experiment. As the result , it was found that GGBF slag increased to some extent flow value and strength of mortar.

  • PDF

콘크리트의 염화물 침투저항성에 미치는 무기질 혼화재 종류의 영향 (The Effect of Mineral Admixtures' Type on the Chloride Penetration Resistance of Concrete)

  • 김영진;김동석;유재강
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.802-805
    • /
    • 2004
  • This study was performed to investigate the effect of mineral admixture' type and replacement ratios on the chloride penetration resistance of concrete which was immersed in the artificial chloride solution. The chloride penetration resistance was evaluated by penetration depth and chloride diffusion coefficient. As a result, all of the mineral admixtures were effective on the chloride penetration resistance of concrete compared to ordinary portland cement only.

  • PDF

알칼리 활성화 플라이애쉬를 사용한 비소성 무기결합재의 제조기술 개발 (Development of Manufacturing Technology of Non-Sintered Inorganic Using Alkali-activated Fly-ash)

  • 정석조;추용식;이종규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.753-756
    • /
    • 2005
  • Recently, the alkali activation of Fly-ash has become a significant field of research because it is possible to use these materials having highly chemical reaction property. Also, the product does not generate CO2 gas, unlike ordinary Portland cement(O.P.C). Therefore, the purpose of this paper is to design for improving mechanical and chemical properties using Fly-ash and Meta-kaolin. And additive(CaO) affected to control the strength behaviors and shrinkage rate.

  • PDF

광물질 혼화재 혼합 고강도콘크리트의 제성질 개선에 대한 연구 (A Study on the Improvement of Properties of High Strength Concrete Using Mineral Admixtures)

  • 문한영;문대중;하상욱
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.335-340
    • /
    • 1997
  • The mineral admixtures, ground granulated blast furnace slag (GSB) and fly ash (FA), were mixed with ordinary portland cement(OPC) in order to reduce temperature rise and slump loss in concrete. In according to concrete replaced with 30% of GBS, the compressive strength of that developed to 574 kg/$\textrm{cm}^2$ at age of 28days and maximum temperature decreased to the extent of $5^{\cire}C$. When GBS and FA are mixed with concrete, it can be estimated that mix proportions of them have to be taken into consideration.

  • PDF

Strength and Some Durability Properties of Concrete Containing Rice Husk Ash Produced in a Charcoal Incinerator at Low Specific Surface

  • Abalaka, A.E.
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권4호
    • /
    • pp.287-293
    • /
    • 2013
  • Strength and some durability properties of concrete containing rice husk ash (RHA) predominantly composed of amorphous silica at a specific surface of 235 $m^2/kg$ produced using a charcoal incinerator were determined. The maximum ordinary Portland cement (OPC) replacement with the RHA increased with increase in water/binder (w/b) ratio of the concrete mixes. The results show that 15 % OPC could be substituted by the RHAwithout strength loss at w/b ratio of 0.50. The split tensile strength generally increased with increase in RHA content for the mixes.

라텍스개질 콘크리트의 물-시멘트비에 따른 건조수축 특성 (Drying Shrinkage Properties of Latex Modified Concrete with Water-Cement Ratios)

  • 정원경;김성환;김동호;이주형;이봉학
    • 산업기술연구
    • /
    • 제22권A호
    • /
    • pp.193-200
    • /
    • 2002
  • Drying shrinkage cracking which may be caused by the relatively large specific surface IS a matter of grave concern for latex modified concrete(LMC) overlay and rapid-setting cement latex modified concrete(RSLMC) overlay. LMC and RSLMC were studied for field applications very actively in terms of strength and durability in Korea. However, there were no considerations in drying shrinkage. Therefore, the purpose of this dissertation was to study the drying shrinkage properties of LMC and RSLMC with the main experimental variables such as cement types(ordinary portland cement, rapid setting cement), water-cement ratios and curing days at a same controlled environment of 60% of relative humidity and $20^{\circ}C$ of temperature The drying shrinkage for specimens was measured with a digital dial gauge of Demec. The test results showed that the drying shrinkage of LMC and RSLMC were considerably lower with low water-cement ratio, respectively This might be attributed to the interlocking of hydrated cement and aggregates by a film of latex particles, water retention due to hydrophobic, and colloidal properties of the latexes resulting in reduced water evaporation.

  • PDF

시공조건이 시멘트계 고화토의 투수계수에 미치는 영향 (Effects of Some Construction Variables on the Hydraulic Conductivity of Soil-Cement in Low Permeable Applications)

  • 정문경;김강석;우제윤
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.427-434
    • /
    • 2000
  • Hydraulic conductivity of soil-cement was measured as a function of some selected construction variables that are often encountered in practice. They are initial (or compaction) water content, delayed compaction after mixing, and repeated freezing and thawing. Sandy and clayey soils were used. The hardening agent used was a cement based soil stabilizer consisting of 80% of ordinary Portland cement and 20% of a combination of supplementary materials. Hydraulic conductivity of soil-cement with varying initial water content was, in trend, similar to that of compacted clay. Hydraulic conductivity of soil-cement decreased with increasing initial water content and reached its minimum when compacted wet of optimum water content. Pore size distributions of soil cement at different initial water contents were analyzed using mercury intrusion porosimetry. The analysis showed that dryer condition led to the formation of larger pores with lesser total pore volume; smaller pores with larger total pore volume at wetter condition. Hydraulic conductivity of soil-cement increased by orders in magnitude when specimen underwent delayed compaction of longer than 4 hours after mixing and repeated freezing and thawing.

  • PDF

보통 포틀랜드 시멘트 물성에 미치는 시멘트 입도의 영향 (Effect of Cement Particle Size on Properties of Ordinary Portland Cement)

  • 변승호;김형철;김재영;최현국;송종택
    • 한국세라믹학회지
    • /
    • 제47권5호
    • /
    • pp.394-400
    • /
    • 2010
  • This study examined the effects of particle size on characteristics of cement by controlling the particle size of commercial cement. Through a size adjustment, the cement has increasing more of particles that are less than $10{\mu}m$ in size so the initial reaction time has been shortened as a result of improvement in the early hydration reaction. Additionally, it showed a great characteristics of strength from the early age and the initial hydration heat has been increased as well. In the upper and middle parts cements, the initial hydration reaction rate contribution is high with the $10{\mu}m$ compared to original cement. So the initial hydration reaction rate is improved and as a result, it also showed relatively high hydration heat as well. Additionally, adiabatic temperature also showed an increase rate in the results.

Mechanical and microstructural investigations on cement-treated expansive organic subgrade soil

  • Nazerke Sagidullina;Jong Kim;Alfrendo Satyanaga;Taeseo Ku;Sung-Woo Moon
    • Geomechanics and Engineering
    • /
    • 제38권4호
    • /
    • pp.353-366
    • /
    • 2024
  • Organic soils pose significant challenges in geotechnical engineering due to their high compressibility and low stability, which can result in issues like differential settlement, rutting, and pavement deformation. This study explores effective methods for stabilizing organic soils. Rather than conventional ordinary Portland cement (OPC), the focus is on using environmentally friendly calcium sulfoaluminate (CSA) cement, known for its rapid setting, high early strength development, and environmental benefits. Mechanical behavior is analyzed through 1-D free swell, unconfined compressive strength (UCS), and bender element (BE) tests. Microstructural analyses, including Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), characterize the soil mixed with CSA cement. Experimental results demonstrate improved soil properties with increasing cement dosage and curing periods. A notable strength increase is observed in soil samples with 15% cement content, with UCS doubling after 7 days. This trend aligns with shear wave velocity results from the BE test. SEM and FTIR spectroscopy reveal how CSA cement hydration forms hydrated calcium silicate gel and ettringite, enhancing soil properties. CSA cement is recommended for reinforcing organic subgrade soil due to its eco-friendly nature and rapid strength gain, contributing to improved durability.