• 제목/요약/키워드: Order of growth

검색결과 7,165건 처리시간 0.035초

GROWTH ANALYSIS OF COMPOSITE ENTIRE FUNCTIONS FROM THE VIEW POINT OF RELATIVE (p, q)-TH ORDER

  • Biswas, Tanmay
    • Korean Journal of Mathematics
    • /
    • 제26권3호
    • /
    • pp.405-424
    • /
    • 2018
  • In this paper we study some comparative growth properties of composite entire functions on the basis of relative (p, q)-th order and relative (p, q)-th lower order of entire function with respect to another entire function where p and q are any two positive integers.

SLOWLY CHANGING FUNCTION ORIENTED GROWTH MEASUREMENT OF DIFFERENTIAL POLYNOMIAL AND DIFFERENTIAL MONOMIAL

  • Biswas, Tanmay
    • Korean Journal of Mathematics
    • /
    • 제27권1호
    • /
    • pp.17-51
    • /
    • 2019
  • In the paper we establish some new results depending on the comparative growth properties of composite entire and meromorphic functions using relative $_pL^*$-order, relative $_pL^*$-lower order and differential monomials, differential polynomials generated by one of the factors.

A FRACTIONAL-ORDER TUMOR GROWTH INHIBITION MODEL IN PKPD

  • Byun, Jong Hyuk;Jung, Il Hyo
    • East Asian mathematical journal
    • /
    • 제36권1호
    • /
    • pp.81-90
    • /
    • 2020
  • Many compartment models assume a kinetically homogeneous amount of materials that have well-stirred compartments. However, based on observations from such processes, they have been heuristically fitted by exponential or gamma distributions even though biological media are inhomogeneous in real environments. Fractional differential equations using a specific kernel in Pharmacokinetic/Pharmacodynamic (PKPD) model are recently introduced to account for abnormal drug disposition. We discuss a tumor growth inhibition (TGI) model using fractional-order derivative from it. This represents a tumor growth delay by cytotoxic agents and additionally show variations in the equilibrium points by the change of fractional order. The result indicates that the equilibrium depends on the tumor size as well as a change of the fractional order. We find that the smaller the fractional order, the smaller the equilibrium value. However, a difference of them is the number of concavities and this indicates that TGI over time profile for fitting or prediction should be determined properly either fractional order or tumor sizes according to the number of concavities shown in experimental data.

SOME GROWTH ASPECTS OF SPECIAL TYPE OF DIFFERENTIAL POLYNOMIAL GENERATED BY ENTIRE AND MEROMORPHIC FUNCTIONS ON THE BASIS OF THEIR RELATIVE (p, q)-TH ORDERS

  • Biswas, Tanmay
    • Korean Journal of Mathematics
    • /
    • 제27권4호
    • /
    • pp.899-927
    • /
    • 2019
  • In this paper we establish some results depending on the comparative growth properties of composite entire and meromorphic functions using relative (p, q)-th order and relative (p, q)-th lower order where p, q are any two positive integers and that of a special type of differential polynomial generated by one of the factors.

MEASURES OF COMPARATIVE GROWTH ANALYSIS OF COMPOSITE ENTIRE FUNCTIONS ON THE BASIS OF THEIR RELATIVE (p, q)-TH TYPE AND RELATIVE (p, q)-TH WEAK TYPE

  • Biswas, Tanmay
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제26권1호
    • /
    • pp.13-33
    • /
    • 2019
  • The main aim of this paper is to establish some comparative growth properties of composite entire functions on the basis of their relative (p, q)-th order, relative (p, q)-th lower order, relative (p, q)-th type, relative (p, q)-th weak type of entire function with respect to another entire function where p and q are any two positive integers.

ON A CLASS OF NONCOOPERATIVE FOURTH-ORDER ELLIPTIC SYSTEMS WITH NONLOCAL TERMS AND CRITICAL GROWTH

  • Chung, Nguyen Thanh
    • 대한수학회지
    • /
    • 제56권5호
    • /
    • pp.1419-1439
    • /
    • 2019
  • In this paper, we consider a class of noncooperative fourth-order elliptic systems involving nonlocal terms and critical growth in a bounded domain. With the help of Limit Index Theory due to Li [32] combined with the concentration compactness principle, we establish the existence of infinitely many solutions for the problem under the suitable conditions on the nonlinearity. Our results significantly complement and improve some recent results on the existence of solutions for fourth-order elliptic equations and Kirchhoff type problems with critical growth.