• Title/Summary/Keyword: Order of Magnitude

Search Result 1,603, Processing Time 0.032 seconds

Interpretation and Generalization by Neuroscience and Material Mechanics on Deviation in Temporomandibular Joint Balancing Medicine (턱관절균형의학에서 편차발생현상의 신경과학 및 재료역학적 해석과 일반화)

  • Gyoo-yong Chi
    • Journal of TMJ Balancing Medicine
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Objectives: For the deviation phenomenon occurring during the treatment process in temporo-mandibular balancing medicine (TBM), hypotheses were established regarding the cause and mechanism of formation from the perspective of neuro-science and material mechanics, and a verification method was proposed. Methods: The deviation phenomenon was theoretically analyzed based on the structure theories of material mechanics of the joint and the neurological pain mechanism. Results: Deviation occurs due to temporary yield by the accumulation of heterogeneous stress in the temporo-mandibular joint and the affected joint. Because the joint structures are corresponding with material mechanics showing compressive and tensile properties. The size of the deviation is expressed in terms of strain. The occlusal surface of the teeth is level with the axial joint. Since the magnitude of the deviation has a proportional relationship with the degree of abnormality of the temporo-mandibular joint, the magnitude of the deviation calculated by the balance measurement can be replaced by the strain. The major variables involved in the occurrence of deviations are the strength of joint structures and neurological conditions. Therefore plastic deformation and adaptation occur as a long-term depression of neural circuits is strengthened in different ways at different locations each time in various clinical situations. This is the reason why the sequence of the restoration process while correcting deviations is following reverse order of the accumulation in many layers in the muscular nervous system. Conclusions: From the above results, it can be inferred that the occurrence and correction of the deviations are corresponding with the plastic deformation and neuro-plasticity.

Psychophysical Discomfort Evaluation of Complex Trunk Postures (복합적인 몸통 자세의 심물리학적 불편도 평가)

  • Lee, In-Seok;Ryu, Hyung-Gon;Chung, Min-K.;Kee, Do-Hyung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.4
    • /
    • pp.413-423
    • /
    • 2001
  • Low back disorders (LBDs) are one of the most common and costly work-related musculoskeletal disorders. One of the major possible risk factors of LBDs is to work with static and awkward trunk postures, especially in a complex trunk posture involving flexion, twisting and lateral bending simultaneously. This study is to examine the effect of complex trunk postures on the postural stresses using a psychophysical method. Twelve healthy male students participated in an experiment, in which 29 different trunk postures were evaluated using the magnitude estimation method. The results showed that subjective discomfort significantly increased as the levels of trunk flexion, lateral bending and rotation increased. Significant interaction effects were found between rotation and lateral bending or flexion when the severe lateral bending or rotation were assumed, indicating that simultaneous occurrence of trunk flexion, lateral bending and rotation increases discomfort ratings synergistically. A postural workload evaluation scheme of trunk postures was proposed based on the angular deviation levels from the neutral position. Each trunk posture was assigned numerical stress index depending upon its discomfort rating, which was defined as the ratio of discomfort of a posture to that of its neutral posture. Four qualitative action categories for the stress index were also provided in order to enable practitioners to apply corrective actions appropriately. The proposed scheme is expected to be applied to several field areas for evaluating trunk postural stresses.

  • PDF

The assessment of the Spatial Variation of the Wind Field using the Meso-velocity Scale and its Contributing Factors (중간 속도 규모를 이용한 바람장의 균질성 평가 및 영향요소 분석)

  • Lee, Seong-Eun;Shin, Sun-Hee;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.343-353
    • /
    • 2010
  • A regional wind network with complex surface conditions must be designed with sufficient space and time resolution to resolve the local circulations. In this study, the spatial variations of the wind field observed in the Seoul and Jeju regional networks were evaluated in terms of annual, seasons, and months to assess the spatial homogeneity of wind fields within the regional networks. The coherency of the wind field as a function of separation distance between stations indicated that significant coherency was sometimes not captured by the network, as inferred by low correlations between adjacent stations. A meso-velocity scale was defined in terms of the spatial variability of the wind within the network. This problem is predictably most significant with weak winds, dull prevailing wind, clear skies and significant topography. The relatively small correlations between stations imply that the wind at a given point cannot be estimated by interpolating winds from the nearest stations. For the Seoul and Jeju regional network, the meso-velocity scale has typically a same order of magnitude as the speed of the network averaged wind, revealing the large spatial variability of the Jeju network station imply topography and weather. Significant scatter in the relationship between spatial variability of the wind field and the wind speed is thought to be related to thermally-generated flows. The magnitude of the mesovelocity scale was significantly different along separation distance between stations, wind speed, intensity of prevailing wind, clear and cloudy conditions, topography. Resultant wind vectors indicate much different flow patterns along condition of contributing factors. As a result, the careful considerations on contributing factors such as prevailing wind in season, weather, and complex surface conditions with topography and land/sea contrast are required to assess the spatial variations of wind field on a regional network. The results in the spatial variation from the mesovelocity scale are useful to represent the characteristics of regional wind speed including lower surface conditions over the grid scale of large scale atmospheric model.

A Review of Experimental Evaluation Method to Floor Environment Vibration Criteria for Semiconductor and Display Equipment (반도체·디스플레이 장비용 바닥 환경진동허용규제치의 실험적 평가방법 고찰)

  • An, Chae Hun;Choi, Jeong Hee;Park, Joon Soon;Park, Min Su
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.25-31
    • /
    • 2021
  • The semiconductor and display equipment demands an ultra-fine precision of several nm to several ㎛, and the scale is getting smaller due to the explosive development. The manufacturing process equipment for such products with ultra-fine precision is very sensitive to ultra-small vibrations flowing from the floor, resulting in problems of production defects and yield degradation. The vibration criteria are a standard that regulates the vibration environment of the floor where such precision process equipment will be installed. The BBN vibration criteria defined the allowable vibration velocity level in the frequency domain with a flat and inclined line and presented a rating according to it. However, the actual vibration criteria have appeared with various magnitudes in the frequency domain according to the dynamic characteristics of individual equipment. In this study, the relationship between the relative motion of two major points in the equipment and the vibration magnitude of the floor is presented using the frequency response function of a simple 3-DOF model. It is describing the magnitudes according to the frequency of the floor vibration that guarantees the allowable relative motion and this can be used as the vibration criteria. In order to obtain the vibration criteria experimentally a method of extracting through a modal test was introduced and verified analytically. It provides vulnerable frequency and magnitude to floor vibration in consideration of the dynamic characteristics of individual equipment. And it is possible to know necessary to improve the dynamic characteristics of the equipment, and it can be used to check the vibration compatibility of the place where the equipment will be installed.

A Study of Over Voltage Ground Relay Operation Status at Opening of No-load Charged Cable (무부하 충전케이블 개방시 잔류전압에의한 과전압계전기 동작현상 연구)

  • Kim, Yeong-Han;Choi, Jong-Hyuck;Yoon, Ki-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.185-187
    • /
    • 2000
  • Fault current is flowed into 154/23kV M. Tr when line-to-ground fault occurs in power system. NGR(Neutral Grounded Reactor) is set up in order to prevent M.Tr fault by limiting magnitude of fault currents. Here, disconnection of NGR causes voltage increase by L-C resonance and line-to-ground fault in an unearthed system results in voltage increase at healthy phases. So Over Voltage Ground Relay(OVGR) is used for tripping M.Tr. Also, buses at second phases of M.Trs are all connected with section circuit breakers closed for the purpose of parallel operation and load shedding. In case of speciality buses are comprised of power cable in part for GIS connection. When no-load charged cable or bus is open by a section CB, unbalanced voltage charged on the bus is induced. Also discrepant opening time for circuit breakers on different phases gives rise to unbalanced zero sequence voltage. It was observed that this zero sequence voltage detected in the 22.9kV P.T (Potential Transformer for bus) mal-operated 59GT and tripped M.Tr. The zero sequence voltage of which vanishing time is longer than relay operating time came out by EMTDC simulation. Also, it was shown that the voltage waves of actual test are similar to those of simulation. On the basis of above results, R-C circuit complement on the relay without any effect on a power system made operating time of the relay longer than vanishing time of distorted waves. Consequently, operating time of the relay was delayed and magnitude of distorted waves was decreased by increasing time constant of the relay.

  • PDF

Geographic Genetic Contour of a Ground Beetle, Scarites aterrimus (Coleoptera: Carabidae) on the Basis of Mitochondrial DNA Sequence

  • Wang, Ah-Rha;Kim, Min-Jee;Cho, Young-Bok;Wan, Xinlong;Kim, Ik-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.22 no.2
    • /
    • pp.65-74
    • /
    • 2011
  • The Scarites aterrimus (Coleoptera: Carabidae), is one of the carabid beetles dwelling exclusively on coastal sandy dunes. Habitat deterioration and equivalent activity have greatly concerned population declines in several species dwelling on the coastal sandy dunes. As a first step to establish long-term conservation strategy, we investigated the nation-wide magnitude and nature of genetic diversity of the species. As a first step, we sequenced a portion of mitochondrial COI gene, corresponding to "DNA Barcode" region (658 bp) from a total of 24 S. aterrimus individuals collected over nine sandy dunes belonging to four Korean provinces. The sequence analysis evidenced moderate to low magnitude of sequence diversity compared with other insect species distributed in Korean peninsula (0.152% to 0.912%). The presence of closely related haplotypes and relatively high gene flow estimate collectively suggest that there had been no historical barriers that bolster genetic subdivision. Population decline was postulated on the basis of several missing haplotypes that are well found in the species with a large population size. This interpretation is consistent with field observation of small population size in the coastal sandy dune habitats. The highest genetic diversity estimates were found in the coastal sand dune population of Seogwipo, Jeju Island, justifying a prior attention to the population, in order to sustain overall genetic diversity of the species. Further scrutinized study might be required for further robust conclusion.

Perception of Recovery, Self-esteem, Role Performance, and Job Satisfaction in Psychiatric Mental Heath Nurse (정신간호사가 지각하는 정신질환자의 회복에 대한 인식, 자아존중감, 역할수행이 직무만족에 미치는 영향)

  • Ryu, Se-Ang;Moon, So-Hyun;Choi, Jeongsuk;Kim, Boohee
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.18 no.4
    • /
    • pp.434-441
    • /
    • 2012
  • Purpose: The purpose of this study was to identify perception of recovery, self-esteem, role performance, job satisfaction and factors influencing job satisfaction of psychiatric mental heath nurses. Methods: Data were collected from 161 psychiatric nurses from G city & J province who understood the purpose of the study and agreed to participate. Data were analyzed using descriptive statistics, t-test, Pearson correlation coefficient, and multiple regression with SPSS 18.0. Results: There were significant differences in job satisfaction between upper 25% and lower 25% group for perception of recovery, self-esteem, and role performance. Results from the multiple regression analysis revealed difference in the related factors and in the magnitude of the relationship evaluated by standardized beta coefficients. Significant factors, listed by the magnitude of beta coefficients, were role performance, self esteem, roles and responsibilities in recovery, expectations regarding recovery in perception of recovery. These variables accounted for 16% of job satisfaction. Conclusion: Results indicate that to improve psychiatric nurses' job satisfaction, there is a need to develop programs including personal qualities and perception of recovery. Further research is necessary in order to establish consensus on roles of the related factors of job satisfaction.

Effect of Intermediate Principal Stress on Rock Fractures

  • Chang, Chan-Dong
    • Journal of the Korean earth science society
    • /
    • v.25 no.1
    • /
    • pp.22-31
    • /
    • 2004
  • Laboratory experiments were conducted in order to find effects of the intermediate principal stress of ${\sigma}_{2}$ on rock fractures and faults. Polyaxial tests were carried out under the most generalized compressive stress conditions, in which different magnitudes of the least and intermediate principal stresses ${\sigma}_{3}$ and ${\sigma}_{2}$ were maintained constant, and the maximum stress ${\sigma}_{1}$, was increased to failure. Two crystalline rocks (Westerly granite and KTB amphibolite) exhibited similar mechanical behavior, much of which is neglected in conventional triaxial compression tests in which ${\sigma}_{2}$ = ${\sigma}_{3}$. Compressive rock failure took the form of a main shear fracture, or fault, steeply dipping in ${\sigma}_{3}$ direction with its strike aligned with ${\sigma}_{2}$ direction. Rock strength rose significantly with the magnitude of ${\sigma}_{2}$, suggesting that the commonly used Mohr-type failure criteria, which ignore the ${\sigma}_{2}$ effect, predict only the lower limit of rock strength for a given ${\sigma}_{3}$ level. The true triaxial failure criterion for each of the crystalline rocks can be expressed as the octahedral shear stress at failure as a function of the mean normal stress acting on the fault plane. It is found that the onset of dilatancy increases considerably for higher ${\sigma}_{2}$. Thus, ${\sigma}_{2}$ extends the elastic range for a given ${\sigma}_{3}$ and, hence, retards the onset of the failure process. SEM inspection of the micromechanics leading to specimen failure showed a multitude of stress-induced microcracks localized on both sides of the through-going fault. Microcracks gradually align themselves with the ${\sigma}_{1}$-${\sigma}_{2}$ plane as the magnitude of ${\sigma}_{2}$ is raised.

Related Factors in Health Promotion Behavior by Gender among College Students (성별에 따른 일부 대학생의 건강증진 행위 관련요인)

  • Chung, Young-Hae;Seo, Nam-Sook;Moon, So-Hyun
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.12 no.2
    • /
    • pp.29-42
    • /
    • 2011
  • Objectives: This is an explanatory correlational study to assess the level of and the relationship of the related factors of health promotion behavior by gender among college students. Methods: Subjects were 950 of the freshmen of the year 2010 at a university in a city adjacent to a metropolis, in S. Korea. Data were collected from the freshmen who understood the purpose of the study and agreed to participate during a freshmen core course using a structured questionnaire. Related factors include active- and passive-self efficacy, internal health locus of control, and social support. Related factors were compared between male and female using t-test and the relationship between the related factors and the health promotion behavior was analyzed separately for each sex, by multiple regression analysis using SPSS 12.0. Results: There were differences in the related factors of BMI between male and female students. They were alcohol behavior and perceived health status among female students while smoking status, alcohol behavior, perceived health status, and BMI among male students. Result from the multiple regression analysis revealed difference in the related factors and in the magnitude of the relationship evaluated by the standardized beta coefficients. Significant factors, listed by the magnitude of beta coefficients, among female were social support, active self efficacy, passive self efficacy, internal health locus of control, and alcohol behavior. Significant factors among male students were social support, active self efficacy, smoking, internal health locus of control, passive self efficacy, and perceived health status. Conclusions: There are gender difference in health promotion behavior and the related factors. The results suggest that the gender differences need to be considered when planning health promotion programs in college. Further research is necessary in order to draw consensus on roles of the related factors of health promotion behavior.

  • PDF

Effect of diurnal variation of background seismic noise level on earthquake detectability (지진관측소 배경잡음 수준의 일변화가 지진 관측 능력에 미치는 영향)

  • Sheen, Dong-Hoon;Shin, Jin-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.54-59
    • /
    • 2009
  • Seismic station of high noise level has difficulties detecting relatively weak ground motions due to small earthquakes or teleseismic events because earthquake detectability of seismic station depends on seismic noise level. To figure out the capability of earthquake detection of a seismic network, therefore, seismic noise level of each station also needs to be considered, including the distribution of seismic stations. Recently, it has been known that most of broadband seismic stations in South Korea have affected by cultural noise in the frequencies higher than 1 Hz and show diurnal variations of noise level. In order to analyze the effect of diurnal variation of seismic noise level on earthquake detectability, we used the result of background seismic noise level analysis of seismograms of 30 broadband stations of KIGAM and KMA from 2005 to 2007. This study shows that earthquakes greater than magnitude 2.4 occurring within the Korean Peninsula can be detected at night while those greater than magnitude 2.6 can be detected in the daytime.

  • PDF