• Title/Summary/Keyword: Orchard soil

Search Result 224, Processing Time 0.03 seconds

Investigation of Chemical Properties of the Jujube Orchard Soils at Boeun Region in Chungbuk (충북 보은지역 대추재배 토양의 화학적 특성 조사)

  • Lee, Gyeong-Ja;Kang, Bo-Goo;Kim, Ki-Sik;Kim, Ik-Hwan;Han, Jong-U
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.1
    • /
    • pp.24-29
    • /
    • 2014
  • BACKGROUND: Recently, as the consumption of fresh jujube is increased, fertilizer in jujube cultivation is excessively used to supply nutrient for large fruit produce. This study was conducted to obtain the useful data related to optimum nutrient management technique for fresh jujube cultivation. METHODS AND RESULTS: Nutrient contents of the jujube orchard soils were investigated at 30 different jujube orchards in Boeun, Chungbuk. Soil samples were collected from the different orchards in June, both 2012 and 2013. Soil chemical properties such as pH, organic matter, available phosphate, and exchangeable potassium, calcium, and magnesium were analyzed. Soil available phosphates in optimum level for jujube cultivation were 7% and 13% of total samples in the 2011 and 2012 respectively, and 73% and 57% were higher than optimum level. In Exchangeable K, 37%, 30% were optimum level, 63%, 67% were higher in the year 2011 and 2012 respectively. CONCLUSION: These results showed that nutrient contents of soils were accumulated in jujube orchard of Boeun area. Especially, available phosphate and exchangeable potassium were greatly higher than their optimum level for jujube cultivation respectively.

Characteristics of Schizandra chinensis Baillon Orchard Soils Located in Jangsu-gun, Jeollabuk-do (전라북도 장수군 오미자 재배과원 토양 특성)

  • Cho, Jae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.478-483
    • /
    • 2010
  • This study was conducted to investigate the physico-chemical properties of Schizandra chinensis Baillon orchard soils located in Jangsu-gun, Jeollabuk-do. Surface (0 to 10 cm) soils were collected from 200 experimental sites located at Jangsu-eup (53 site), Gyenam-myeon (31), Chunchun-myeon (73), Janggye-myeon (12), Bunyam-myeon (31). The soil texture was mostly loamy sand, and the mean values of degree of soil aggregate and soil porosity were 33.1 and 59.9%, respectively. The pH, EC, total-N, available-P, soil organic matter, and cation exchange capacity of the soils were $5.51{\pm}0.54$, $290{\pm}139{\mu}S\;cm^{-1}$, $946.3{\pm}65.5mg\;kg^{-1}$, $319.6{\pm}29.2mg\;kg^{-1}$, $29.0{\pm}13.9g\;kg^{-1}$ and $4.11{\pm}0.34cmol_c\;kg^{-1}$, respectively. The concentrations of Pb, Cd, Cu and Zn were $3.48{\pm}0.55$, $0.09{\pm}0.04$, $6.90{\pm}0.91$ and $97.7{\pm}42.2mg\;kg^{-1}$, respectively. The presented data can be utilized in better managing Schizandra chinensis Baillon orchard soils in the studied areas.

Growth and crop residue of soybean and barley grown at high paraquat level of the orchard soil (고농도 paraquat 잔류 과원토양에서의 콩과 보리 생육 및 작물 잔류)

  • Chun, Jae-Chul;Park, Nam-Il;Kim, Sung-Eun;Chun, Jae-Kwan
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.85-89
    • /
    • 1998
  • Effect of soil residue paraquat (1,1-dimethyl-4,4-dipyridinium dichloride) on growth of barley (Hordeum vulgare L. cv. Sacheon No.6 and cv. Tapgolbori) and soybean [Glycine max (L.) Merr. cv. Alcheon and Danyeop] was investigated. Changes in soil residue paraquat during the cultivation period and residue amount in the p1ants at harvest were also determined. Experiments were conducted at two paraquat residue conditions; the first was done in an apple orchard soil where paraquat residue recorded 30.2 ppm in 1996, but decreased to about 9 to 9.8 ppm at the time of crop seeding and the second was conducted in the soil fortified to about 27 to 32 ppm paraquat residue. In both conditions, no crop injury due to the residue paraquat was observed and number of emerged seedlings and plant height of the two crops were not affected by soil residue paraquat. Residue amount of paraquat in the plants occurred less than 0.5 ppm detection limit. At the first condition, soil residue paraquat was further slightly decreased for 90 days after seeding, while no great change in the residue level was found at the second condition for 30 days after seeding. The results suggest that no carry-over effect occurs at about 30 ppm of soil residue paraquat and at present crop cultivation in Korean orchard soils are safe with respect to crop growth and paraquat residue in the plants.

  • PDF

Chemical Characteristics of Soils in Cheju Island -III. Aluminum Composition of the Citrus Orchard Soils (제주도(濟州道) 토양(土壤)의 화학적(化學的) 특성(特性) 조사(調査) 연구(硏究) -III. 감귤원(柑橘園) 토양(土壤)에서의 알루미늄 특성(特性))

  • Yoo, Sun-Ho;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.2
    • /
    • pp.167-172
    • /
    • 1984
  • The aluminum composition of the citrus orchard soils (volcanic ash soil) in Cheju Island was studied. The content of extractable Al was high, especially for the sub-soil. However the exchangeable Al was relatively low : it was only one-tenth of the extractable Al content. The exchangeable Al of the citrus orchard soils decreased with increasing number of years of cultivation. This has resulted from an increase in pH. The content of the extractable Al of the citrus orchard soils also decreased with the increase in number of years of cultivation. This is related to the fact that the application of phosphate fertilizers led to a reduction in Al activity. Therefore, the extractable Al showed a highly significant correlation with the available phosphorus in the top soil. However it was not significantly affected by phosphates in the sub-soil where the available phosphorus was extremely low. The extractable Al content strongly correlated with the organic matter and pH(NaF) in the sub-soil, but the correlation was less significant in the top soil. This suggests that large amounts of the extractable Al are released from the hydrous oxides of Al and that the organically complexed form in the sub-soil and non-extractable due to the reactions with phosphates applied to the top soil.

  • PDF

Cutting Frequency and Liquid Manure Application on Green Manure Production of Rye and Hairy Vetch in Pear Orchard

  • Lee, Seong Eun;Park, Jin Myeon;Noh, Jae Seung;Lim, Tae Jun;Choi, Dong Geun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.322-326
    • /
    • 2013
  • Many organic fruit growers adopt cover cropping in their orchards to improve soil properties. A field experiment was conducted to determine the effects of cutting frequency of cover crop (CF) and liquid manure application (LM) on green manure production (GMP) and returnable nutrient content (RNC) in pear orchard. The combined effects of CF and LM were tested at two levels, respectively, with liquid manure ($L_1$) and without liquid manure ($L_0$). After that, cover crops were cut once ($C_1$) and three times ($C_3$) in rye, and twice ($C_2$) and four times ($C_4$) in hairy vetch. The result showed that main factors related to green manure production were different depending on the species. In rye, LM was more effective in increasing the dry weight of cover crop and RNC than CF. In contrast, the parameters were more affected by CF rather than LM in hairy vetch. Thus, it is suggested that different management technique is needed depending on the cover crop species in order to maximize the green manure production in pear orchard.

Effects of Cover Crops on Soil Chemical Properties and Biota in a Pear Orchard

  • Eo, Jinu;Park, Jin-Myeon;Park, Kee-Choon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • The use of cover crops has a beneficial effect on sustainable soil management in pear orchards. We aimed to compare changes in soil chemical properties and biota with the use of different cover crops. We tested the effects of five cover plants, including hairy vetch, orchard grass, rattail fescue, rye, and perennial ryegrass. Use of different cover crops had a minimal impact on soil chemical properties through three year experiments. The aboveground biomass was greatest with the use of rye. The potential amounts of returnable N and P were highest when leguminous hairy vetch was used as a cover plant. Changes in the composition of the microbial community were investigated by phospholipid fatty acid (PLFA) analysis. Microbial PLFAs were highest with the use of rattail fescue and lowest with the use of hairy vetch. Minimal changes in the abundances of nematodes and microarthropods suggested that there was no bottom-up control in the soil ecosystem. The results also show that increases in aboveground biomass and nutrient content with the use of cover crops may not promote the abundance of soil organisms.

Investigation of Residual Organochlorine Pesticides in Apple and Pear Orchard Soil and Fruit (사과 및 배 과수원의 토양 및 과실 중 잔류성유기염소계 농약류 잔류량 조사)

  • Lim, Sung-Jin;Park, Jeong-Hwon;Ro, Jin-Ho;Lee, Min-Ho;Yoon, Hyo-In;Choi, Geun-Hyoung;Ryu, Song-Hee;Yu, Hye-Jin;Park, Byung-Jun
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.2
    • /
    • pp.110-118
    • /
    • 2019
  • BACKGROUND: Residual organochlorine pesticides (OCPs) are designated as persistent organic pollutants (POPs) by Stockholm Convention because they bioaccumulate through the food web, and pose a risk of causing adverse effect to human health and the environment. Apple and pear is economic crop in agriculture, and its cultivation area and yield has been increased. Therefore, we tried to investigate the OCPs residue in apple and pear orchard soils and fruits. METHODS AND RESULTS: Extraction and clean-up method were developed using the modified QuEChERS method for residual organochlorine pesticides (ROCPs) in apple and pear orchard soil and fruits. Recovery and limit of quantitation (LOQ) of ROCPs in soil and fruits were 75.4-101.4 and 76.9-93.4%, 0.03-0.21 and $0.6-1.2{\mu}g/kg$, respectively. Detected ROCPs in apple and pear orchard soil was 2,4-DDT, 4,4-DDD, 4,4-DDE, 4,4-DDT, and endosulfan sulfate, the residues were 2.2, 1.9-48.0, 1.3-84.1, 90.6-863.1, and $11.3-239.0{\mu}g/kg$, respectively. But five pesticides in all fruit samples were not detected. CONCLUSION: These results showed that ROCPs residues in apple and pear orchard soil had no effect on safety of agricultural products.

Soil Dehydrogenase Activity and Microbial Biomass C in Croplands of JeJu Province (제주지역 농경지 이용유형별 토양 탈수소효소활성과 미생물체량)

  • Joa, Jae-Ho;Moon, Kyung-Hwan;Choi, Kyung-San;Kim, Seong-Cheol;Koh, Sang-Wook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.2
    • /
    • pp.122-128
    • /
    • 2013
  • This study was carried out to evaluate the soil dehydrogenase activity and microbial biomass C with soil type and land use in cropland of JeJu region. Soil chemical properties, dehydrogenase activity, and microbial biomass C were analyzed after sampling from upland (50 sites), orchard (50 sites), paddy (30 sites), horticultural facility (30 sites) in March. Average pH values was at 6.3 in upland soil, however soil chemical properties showed a large spatial variations in both orchard and horticultural facility soil. The Zn and Cu contents increased by the continuous application of pig manure compost in some citrus orchard soil. Soil dehydrogenase activity and microbial biomass C were higher in non-volcanic ash than in volcanic ash soil regardless of land use type. Soil dehydrogenase activity was two to four times higher in upland than in the others. It was at 38.7 ug TPF $24^{h-1}g^{-1}$ in non-volcanic ash of upland soil. Microbial biomass C content was very high in horticultural facility soil and it showed at 216.8 $mg\;kg^{-1}$ in non-volcanic ash. Soil dehydrogenase activity showed a positive correlation with organic matter ($r^2$=0.59), Zn ($r^2$=0.65), and Cu ($r^2$=0.66) in non-volcanic ash horticultural facility soil. There was a negative correlation ($r^2$=0.57) between soil organic matter and dehydrogenase activity in volcanic ash upland soil.

Effect of Soil surface Soil Management Practices on Microflora in Volcanic Ash Soils of Citrus Orchard (화산회토 감귤원의 표토관리방법이 토양 미생물상에 미치는 영향)

  • Joa, Jae-Ho;Lim, Han-Cheol;Koh, Sang-wook;Hyun, Hae-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.165-170
    • /
    • 2004
  • This study was conducted to investigate the effect of different surface soil management practices on soil microflora in volcanic ash soils of citrus orchard. Soil samples were collected from citrus orchards of clean cultivation, grass sod, and grass mulch system in May and September 1997. Soil chemical properties, populations of various microorganisms, enzyme activities, microbial biomass C were analyzed. Average soil pH were 4.7, and average nitrogen and organic matter contents were 6 and $140.2g\;kg^{-1}$, respectively. Aerobic bacteria were distributed at $26,2-47.3{\times}10^6cfu\;g^{-1}$ level. Among the aerobic bacteria Pseudomonas spp., Rhizobium spp., and thermophilic Bacillus spp. were dominant in most of the investigated orchard soils. Density of actinomycetes were low at $1.8-84.6{\times}10^5cfu\;g^{-1}$ level. Fungi were distributed at $26.4-182.1{\times}10^5cfu\;g^{-1}$ level and the density was higher in grass mulch and sward sites. In september, phosphomonoesterase activity was high at $239.6{\mu}g\;PNP\;g\;soil^{-1}\;h^{-1}$ in clean cultivated citrus orchards. Soil cellulase activity were higher at $602.6{\mu}g\;GE\;g\;soil^{-1}$\;24\;h^{-1}$ in grass sward cultivation than any other soil management practices. Soil microbial biomass C was higher in grass mulch cultivated orchards.

판별분석을 이용한 토지이용별 토양 특성 변화 연구

  • Go Gyeong-Seok;Kim Jae-Gon;Lee Jin-Su;Kim Tak-Hyeon;Lee Gyu-Ho;Jo Chun-Hui;O In-Suk;Jeong Yeong-Uk
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.237-241
    • /
    • 2005
  • The physical and chemical characteristics of soils in a small watershed were investigated and the effect of geology and land use on soil quality were examined by using multivariate statistical methods, principal components analysis and discriminant analysis. It was considered that the accumulation of salts in the farmland soils indicated by electrical conductivity, contents of cations and anions and pH was caused by fertilizer input during cultivation. The contents of inorganic components are increased as following order: upland > orchard > paddy field > forest. The results of two discriminant analyses using water extractable inorganic components and their ratios by land use were also clearly classified by discriminant function 1 and 2. In discriminant analysis by components, discriminant function 1 indicated the effect of fertilizer application and increased as following order: upland > orchard > paddy field > forest soil.

  • PDF