• 제목/요약/키워드: Orbiting motion

검색결과 22건 처리시간 0.029초

Status and Prospects of Marine Wind Observations from Geostationary and Polar-Orbiting Satellites for Tropical Cyclone Studies

  • Nam, SungHyun;Park, Kyung-Ae
    • 한국지구과학회지
    • /
    • 제39권4호
    • /
    • pp.305-316
    • /
    • 2018
  • Satellite-derived sea surface winds (SSWs) and atmospheric motion vectors (AMVs) over the global ocean, particularly including the areas in and around tropical cyclones (TCs), have been provided in a real-time and continuous manner. More and better information is now derived from technologically improved multiple satellite missions and wind retrieving techniques. The status and prospects of key SSW products retrieved from scatterometers, passive microwave radiometers, synthetic aperture radar, and altimeters as well as AMVs derived by tracking features from multiple geostationary satellites are reviewed here. The quality and error characteristics, limitations, and challenges of satellite wind observations described in the literature, which need to be carefully considered to apply the observations for both operational and scientific uses, i.e., assimilation in numerical weather forecasting, are also described. Additionally, on-going efforts toward merging them, particularly for monitoring three-dimensional TC wind fields in a real-time and continuous manner and for providing global profiles of high-quality wind observations with the new mission are introduced. Future research is recommended to develop plans for providing more and better SSW and AMV products in a real-time and continuous manner from existing and new missions.

Planetary companions orbiting K giant HD 208527 and M giant HD 220074

  • 이병철;한인우;박명구
    • 천문학회보
    • /
    • 제37권2호
    • /
    • pp.107.2-107.2
    • /
    • 2012
  • The purpose of the present study is to search for and study the origin of planetary companion by a precise radial velocity (RV) survey for K dwarfs. The high-resolution spectroscopy of the fiber-fed Bohyunsan Observatory Echelle Spectrograph (BOES) at Bohyunsan Optical Astronomy Observatory (BOAO) is used from September 2008 to June 2012. We report the detection of two new exoplanets in orbit around HD 208527, and HD 220074 with exhibiting a periodic variation of 875.5 and 672.1 days. The examinations of surface inhomogeneous are no related to the RV variations and Keplerian motion is the most likely explanation, which suggests that the RV variations arise from an orbital motion under the influence of planetary companion. We obtain the minimum masses for the exoplanets of 11.5 and 11.1 MJup with an orbital semi-major axis of 2.3 and 1.6 AU and an eccentricity of 0.08 and 0.14, respectively. From the literatures and our estimations of stellar parameters, the luminosity class of HD 208527 is changed K dwarf to K giant and the spectral type of HD 220074 is confirmed M giant rather than K dwarf. HD 220074 is the first M giant star harboring a planetary companion.

  • PDF

GPS를 이용한 위성궤도추정 (Orbit Estimation of the Satellite using GPS)

  • Park, Soo-Hong;Lee, Jong-Nyun
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.388-392
    • /
    • 1996
  • Orbit Determination is process of obtaining values of those parameter which completely specify the motion of an orbiting body through space, based on a set of observation of the body. For the narrow land of Korea, the ground tracking system has very limited time of operation. In this connection the use of GPS for orbit determination has advantage of full autonomy on the ground station. It would be more powerful economical method for near-earth satellites. Therfore we have better to pay attention to the research of satellites of orbit determination by use of GPS. So in this research, we studied themotion of the satellites with estimation using GPS. As a result, the result of computer simulation show that good convergence and indicated effective for real operation.

  • PDF

스크롤 압축기의 열응력 및 열변형에 관한 실험적 연구 (An experimental study on the thermal stress and deformation of the scroll compressor)

  • 홍정표;구인회;박진무
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.502-506
    • /
    • 2000
  • In this study, an experimental method measuring the scroll under the temperature distribution similar to the operating condition is proposed and the results are presented. Direct measurement of the actual thermal stress is very difficult because of the rapid and complex motion of the orbiting scroll. Therefore, the experimental condition is provided on the stationary scroll heated in the electric furnace and, then, the mechanical stress and the effects of refrigerant are excluded from the resulting measurement. The experimental results are compared with these of FEM, both showing good agreement.

  • PDF

누설 유동을 고려한 스크롤 압축기의 동적 거동 해석 (Dynamic Behavior Analysis of Scroll Compressor Considering Leakage Flow)

  • 정영철;원성규;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.417-420
    • /
    • 2005
  • This paper presents an analytical method to evaluate the dynamic behavior of the scroll compressor. Unbalanced forces and moments act on the compressor body because of the reaction forces acting on rotating components like the orbiting scroll, Oldham coupling ring, and the crank shaft. The vibration of the compressor is induced by the forces and the moments. In this paper, through modeling of the leakage flow, solving the forces from the equations of motion of the moving parts, the analysis of vibration of the compressor was performed. According to the operating condition, the variation of acceleration of the compressor body were calculated and compared.

  • PDF

확장형 칼만 필터를 이용한 인공위성 편대비행 상대 상태 추정 (Extended Kalman Filter Based Relative State Estimation for Satellites in Formation Flying)

  • 이영구;방효충
    • 제어로봇시스템학회논문지
    • /
    • 제13권10호
    • /
    • pp.962-969
    • /
    • 2007
  • In this paper, an approach is developed for relative state estimation of satellite formation flying. To estimate relative states of two satellites, the Extended Kalman Filter Algorithm is adopted with the relative distance and speed between two satellites and attitude of satellite for measurements. Numerical simulations are conducted under two circumstances. The first one presents both chief and deputy satellites are orbiting a circular reference orbit around a perfectly spherical Earth model with no disturbing acceleration, in which the elementary relative orbital motion is taken into account. In reality, however, the Earth is not a perfect sphere, but rather an oblate spheroid, and both satellites are under the effect of $J_2$ geopotential disturbance, which causes the relative distance between two satellites to be on the gradual increase. A near-Earth orbit decays as a result of atmospheric drag. In order to remove the modeling error, the second scenario incorporates the effect of the $J_2$ geopotential force, and the atmospheric drag, and the eccentricity in satellite orbit are also considered.

Hybrid Cartesian/Immersed Boundary 법을 이용한 2차원 변형날개 주위 점성유동 해석 (Numerical Simulation of a Viscous Flow Field Around a Deforming Foil Using the Hybrid Cartesian/Immersed Boundary Method)

  • 신상묵;김형태
    • 대한조선학회논문집
    • /
    • 제43권5호
    • /
    • pp.538-549
    • /
    • 2006
  • A code is developed to simulate a viscous flow field around a deformable body using the hybrid Cartesian/immersed boundary method. In this method, the immersed boundary(IB) nodes are defined near the body boundary then velocities at the IB nodes are reconstructed based on the interpolation along the normal direction to the body surface. A new method is suggested to define the IB nodes so that a closed fluid domain is guaranteed by a set of IB nodes and the method is applicable to a zero-thickness body such as a sail. To validate the developed code, the vorticity fields are compared with other recent calculations where a cylinder orbits and moves into its own wake. It is shown the code can handle a sharp trailing edge at Reynolds number of $10^5$ under moderate requirements on girds. Finally the developed code is applied to simulate the vortex shedding behind a deforming foil with flapping tail like a fish. It is shown that the acceleration of fluids near the flapping tail contributes to the generation of the thrust for propulsion.

인공우주물체 추적 및 관측용 시스템 개발 (DEVELOPMENT OF TRACKING AND OBSERVING SYSTEM FOR MAN-MADE SPACE OBJECTS)

  • 김원규;민상웅
    • Journal of Astronomy and Space Sciences
    • /
    • 제20권2호
    • /
    • pp.153-162
    • /
    • 2003
  • 인공우주물체의 추적 및 관측을 위해 LX-200 12인치 망원경시스템을 도입하여 시스템의 구동부(모터, 모터드라이버, 모션컨트롤러)를 응답특성이 빠르고 능동제어가 가능한 것으로 개선하였다. 또한, PC를 이용하여 대상물의 실시간 궤적정보를 계산하여 모터 드라이버 내의 PID 제어기에 신호를 제공하였고, 명령신호 제어주기도 20ms까지 줄였다. 그 결과, 가대의 구동속도는 $18^{circ}/sec$로 향상되고 상용시스템보다 응답속도가 빠르며 대상물의 이미지 관측시 flipping 현상을 최소화하는 시스템을 개발하였다.

고속 회전하는 볼베어링 내 공기 유동구조 수치해석 연구 (A Computational Investigation on Airflow Structures Inside a Ball Bearing at High-Speed Rotation)

  • 김동주;오일석;홍성욱;김경진
    • 한국정밀공학회지
    • /
    • 제28권6호
    • /
    • pp.745-750
    • /
    • 2011
  • In a hope to better understand the flow and convective heat transfer characteristics inside a ball bearing, air flow between the rolling elements and raceways at high speed bearing rotation is numerically investigated using a simplified inner geometry of bearing and a CFD technique. Flow simulation results reveal the pressure distribution of airflow and the shear stress distribution on the ball surface, of which nonuniformity becomes significant with the increasing rotational speed. Also, the local point of maximum shear stress coincides with the stagnation flow area on the surface of rolling elements. A complex pattern of three-dimensional vortex structures is found in the air flow due to the relative motion of bearing elements and three different types of vortex pairs exist around the rotating and orbiting rolling elements.

Trajectory analysis of a CubeSat mission for the inspection of an orbiting vehicle

  • Corpino, Sabrina;Stesina, Fabrizio;Calvi, Daniele;Guerra, Luca
    • Advances in aircraft and spacecraft science
    • /
    • 제7권3호
    • /
    • pp.271-290
    • /
    • 2020
  • The paper describes the analysis of deployment strategies and trajectories design suitable for executing the inspection of an operative spacecraft in orbit through re-usable CubeSats. Similar missions have been though indeed, and one mission recently flew from the International Space Station. However, it is important to underline that the inspection of an operative spacecraft in orbit features some peculiar characteristics which have not been demonstrated by any mission flown to date. The most critical aspects of the CubeSat inspection mission stem from safety issues and technology availability in the following areas: trajectory design and motion control of the inspector relative to the target, communications architecture, deployment and retrieval of the inspector, and observation needs. The objectives of the present study are 1) the identification of requirements applicable to the deployment of a nanosatellite from the mother-craft, which is also the subject of the inspection, and 2) the identification of solutions for the trajectories to be flown along the mission phases. The mission for the in-situ observation of Space Rider is proposed as reference case, but the conclusions are applicable to other targets such as the ISS, and they might also be useful for missions targeted at debris inspection.