• Title/Summary/Keyword: Orbital interaction

Search Result 124, Processing Time 0.021 seconds

Energy Level Alignment between Hole Injecting HAT-CN and Metals and Organics: UPS and ab-initio Calculations

  • Kang, H.;Kim, J.H.;Kim, J.K.;Kwon, Y.K.;Kim, J.W.;Park, Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.108-111
    • /
    • 2009
  • We have determined the electronic energy level alignment at the interface between 4,4'-bis-N-phenyl-1-naphthylamino biphenyl (NPB) and 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HAT-CN) using ultraviolet photoelectron spectroscopy (UPS). The highest occupied molecular orbital (HOMO) of 20 nm thick HAT-CN film was located at 3.8 eV below the Fermi level. Thus the lowest unoccupied molecular orbital (LUMO) is very close to the Fermi level. The HOMO position of NPB was only about 0.3 eV below Fermi level at NPB/HAT-CN interface. This enables an easy excitation of electrons from the NPB HOMO to the HAT-CN LUMO, creating electron-hole pairs across this organic-organic interface. We also study the interaction of HAT-CN with a few metallic surfaces including Ca, Cu, and ITO using UPS and ab-inito electronic structure calculation techniques.

  • PDF

Effects of the Magnetic Part of The Breit Term on Bonding: Model Calculations with Small Diatomic Molecules

  • Ryu, Seol;Kyoung K. Baeck;Han, Yeong Gyu;Lee, Yun Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.969-974
    • /
    • 2001
  • Model calculations for small molecules Li2, F2, LiF and BF have been performed at the Dirac-Fock level of theory using Dirac-Coulomb and Dirac-Coulomb-Magnetic Hamiltonians with various basis sets. In order to understand what may happen when the relativity becomes significant, the value of c, speed of light, is varied from the true value of 137.036 a.u. to 105 (nonrelativistic case) and also to 50 and 20 a.u. (exaggerated relativistic cases). Qualitative trends are discussed with special emphasis on the effect of the magnetic part of the Breit interaction term. The known relativistic effects on bonding such as the bond length contraction or expansion are demonstrated in this model study. Total energy, $\pi-orbital$ splitting, bond length, bond dissociation energy and dipole moment are calculated, and shown to be modified in a uniform direction by the effect of the magnetic term. Inclusion of the magnetic term raises the total energy, increases the bond length, reduces the $\pi-orbital$ splitting, increases the bond dissociation energy, and mitigates the changes in dipole moment caused by the Dirac term.

Jet Interaction Flow Analysis of Lateral Jet Controlled Interceptor Operating at Medium Altitude (중고도에서 운용되는 측 추력 제어 요격체에 대한 제트 간섭 유동 분석)

  • Choi, Kyungjun;Lee, Seonguk;Oh, Kwangseok;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.986-993
    • /
    • 2018
  • Lateral thrust jet has better maneuverability performance than the control surface like the conventional fin for attitude control or orbital transition of guided weapons. However, in the supersonic region, a jet interaction flow occurs due to the lateral thrust jet during flight, and a complicated flow structure is exhibited by the interaction of the shock wave, boundary layer flow, and the vortex flow. Especially, hit-to-kill interceptors require precise control and maneuvering, so it is necessary to analyze the effect of jet interaction flow. Conventional jet interaction analyses were performed under low altitude conditions, but there are not many cases in the case of medium altitude condition, which has different flow characteristics. In this study, jet interaction flow analysis is performed on the lateral jet controlled interceptor operating at medium altitude. Based on the results, the structural characteristics of the flow field and the changes of aerodynamic coefficient are analyzed.

Determination of Strongly Interacting Spin Exchange Path and Spin Lattice Model of (VO)2(H2O){O3P-(CH2)3-PO3}ㆍ2H2O on the Basis of Spin Dimer Analysis

  • Kim, Dae-Hyun;Koo, Hyun-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1665-1668
    • /
    • 2010
  • The spin exchange interactions of $(VO)_2(H_2O){O_3P-(CH_2)_3-PO_3}{\cdot}2H_2O$ were examined by spin dimer analysis based on extended Huckel tight binding method. The strongest spin exchange interaction occurs through the super-superexchange path $J_2$ and the second strongest spin exchange interaction occurs through the superexchange interaction path $J_1$. There are two strongly interacting spin exchange paths in $(VO)_2(H_2O){O_3P-(CH_2)_3-PO_3}{\cdot}2H_2O$. Therefore, magnetic susceptibility curve of $(VO)_2(H_2O){O_3P-(CH_2)_3-PO_3}{\cdot}2H_2O$ can be well reproduced by an alternating onedimensional antiferromagnetic chain model rather than an isolated spin dimer model.

An NMR Study of Solvent Interactions in a Paramagnetic System

  • Golding, R.M.;Pascual, R.O.;Suvanprakorn, C.;Dance, I.G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1752-1756
    • /
    • 2006
  • This study explores and interprets in a new way the complex solvent and the temperature dependence of the NMR shifts for the N-$CH_2$ protons in tris(N,N-diethyldithiocarbamato) iron(III) in acetone, benzene, carbon disulfide, chloroform, dimethylformamide and pyridine. The NMR shifts are interpreted in terms of the Fermi contact interaction and the dipolar term from the multipole expansion of the interaction of the electron orbital angular momentum and the electron spin dipolar-nuclear spin angular momentum. This analysis yields a direct measure of the effect of the solvent system on the environment of the transition metal ion. The results are analysed in terms of the crystal field environment of the transition metal ion with contributions from (a) the dithiocarbamate ligand (b) the solvent molecules and (c) the interaction of the effective dipole moment of the polar solvent molecule with the transition metal ion complex.

Electronic Structure Calculations for ArCO$_2\;^+$ and ArCO$_2$

  • Hwang, Woong-Lin;Lee, Yoon-Sup;Kim, Ja-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.3
    • /
    • pp.153-156
    • /
    • 1988
  • Ab initio calculations are performed for $ArCO_2^+$ and $ArCO_2$. Between the two configurations of $ArCO_2^+$ the orbital interactions and the higher order correlation calculations favor the T-shape, and their interaction energies are calculated to be approximately half the experimental values using 6-31G$^{\ast}$ basis set. In $ArCO_2$, the calculations qualitatively favor the T-structure, which is compatible with the experiment. However, the true interaction energy is obscured since it is within the BSSE limit at this basis set size and the correlation level. Addition of sp type diffuse functions increase the interaction energies by a considerable amount, but the BSSE estimated by CP method are responsible for the significant portion of the difference. The possible equilibrium structure of the $Ar^+-CO_2$ complex, where the charge is localized on Ar, is suggested as having a linear structure. The potential energy surface and the amount of charge transfer are shown to be sensitive to the type and balancing of basis set.

Theoretical Studies on Orbital Interactions and Conformation of ${\alpha}$-Substituted Acetones (${\alpha}$-치환 아세톤의 궤도간 상호작용과 형태에 관한 이론적 연구)

  • Ikchoon Lee;Kiyull Yang;Wang Ki Kim;Byung Hoo Kong;Byung Choon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.9-18
    • /
    • 1986
  • MNDO and STO-3G calculations were performed to determine relative stabilities of rotamers for ${\alpha}$-substituted acetones, $CH_2XCOCH_3$, X = F, Cl, OH, SH, and $NH_2$. It was found that rotamers corresponding to gauche forms are preferred for all the ${\alpha}$-substituents except for X = F and NH$_2$, for which the cis forms were the preferred ones. The stability of gauche form was dictated by the stabilizing two-orbital-two-electron interaction ${\sigma}_{cx}$-${\pi}_{co}^*$, operating uniquely in the gauche form due to the substantial vicinal overlap and energy gap narrowing between ${\sigma}_{cx}$ and ${\pi}_{co}^*$ orbitals. The energy gap narrowing was caused by the lowering of ${\pi}_{co}^*$ level due to the hyperconjugative ${\sigma}_{cx}^*$-${\pi}_{co}^*$ interactions; the red shift in the n-${\pi}^*$ transition was another effect of the relatively large ${\sigma}_{cx}^*$-${\pi}_{co}^*$ splitting. Various ${\sigma}-{\pi}$ interactions in the gauche form were found to be stronger in the third-row hetero atom system, X = Cl and SH. Interactions between nonbonding orbital on N, $n_N$ and vicinal C-C ${\sigma}$ bond were shown to be stronger in the trans than in the cis orientation.

  • PDF

Semi-Empirical MO Calculations on ${\pi}$-Nonbonded and ${\sigma}$-Conjugative Interactions (반경험적 분자궤도함수 계산법에 의한 ${\pi}$-비결합 및 ${\sigma}$-컨쥬게이션 상호작용에 관한 연구)

  • Ikchoon Lee;Young Gu Cheun;Kiyull Yang;Wang Ki Kim
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.195-204
    • /
    • 1982
  • Semi-empirical MO calculations, EHT, CNDO/2, MINDO/3, and MNDO met hods, were performed on various geometries of n-butane, n-alkyl radical and tetramethylene diracal (triplet) in order to compare eigenvalue and eigenvector properties with those obtained by STO-3G method. All methods predicted the same relative order of stabilities of various geometries for n-butane; geometrical preferences were found to be dominated by one-electron factor, ${\pi}$-orbital energy changes being more impotant in the semi-empirical methods. The hyperconjugative energy changes accompanying structural changes from $(n-{\sigma}{\ast})_{trans}$ to (n-{\sigma}{\ast})cis were underestimated in the EHT, CNDO/2 and MINDO/3, whereas those were overestimated in the MNDO. The net destabilizing effect of $(n-{\sigma}{\ast})_{trans}$ structure was mainly due to the large internuclear energy involved in the structure. Through-space interaction between $n_1$ and $n_2$ orbitals of diradical caused energy gap narrowing of ${\Delta}E_{sp}$ and ${\Delta}{\varepsilon}={\varepsilon}_0$-${\varepsilon}_{av}$; through-space interaction had opposing effect to that of through-bond interaction. Due to the less severe neglect of differential overlaps in the MNDO, this energy gap narrowing effect appeared amplified in the MNDO. In general orbital properties were found to be reproduced satisfactorily, but eigenvalue properties were not, in all the semi-empirical methods especially when ${\sigma}-{\sigma}{\ast}$ and n-$n-{\sigma}{\ast}$interactions were involved.

  • PDF

The MO Study about Interaction of cis-Diamminedichloroplatinum (cis-DDP) Complexes with DNA base, 1-Methylcytosine, for Development of Anti-Tumor Drugs (항암성물질의 개발을 위한 cis-Diamminedichloroplatinum (cis-DDP) 류와 DNA base인 1-Methylcytosine의 Interaction에 관한 분자궤도함수론적 연구)

  • Kim, Ui Rak;Kim, Sang Hae;Edward A. Boudreaux
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.331-339
    • /
    • 1990
  • It has been studied that relations between electronic structure and anti-tumor activity by variation of amine group in cis-diamminedichloroplatinum (Ⅱ) complexes. We were also interested in these Pt (Ⅱ) complexes interaction with 1-methylcytosine of DNA base and the electronic structure of these complexes in order to understand the mechanism of the metal-nucleobases interaction. The results showed that net charge of center metal in Pt complexes effect anti-tumor activity. The mechanisgm of the bonding between metal and ligands largely based on charge transfer from ligand to metal atom. Furthermore, the established molecular orbitals showed that metal 6p-orbitals played an important role in the bonding scheme for the interactions between platinum (Ⅱ) complexes and 1-methylcytosine. We also found that the stronger Pt-N3 bonding strength became, the better anti-tumor agents were.

  • PDF

Magnetic Exchange Interactions in a 2D Grid-like Copper(II) Polymer with Bridging End-on Cyanato and Pyrazine Ligands: A DFT Study

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1704-1710
    • /
    • 2010
  • The structure of a 2D grid-like copper(II) complex [Cu$(NCO)_2$(pyz)](pyz=pyrazine) (1) consists of 1D chains of Cu-pyz units connected by double end-on (EO) cyanato bridges. Each Cu(II) ion has a distorted octahedral coordination, completed by the four EO cyanato and two pyrazine ligands. Magnetic interactions through EO cyanato and pyrazine bridges in 1 are discussed on the basis of DFT broken-symmetry calculations at the B3LYP level. For model dicopper(II) complexes I (bridged by cyanato) and II (bridged by pyrazine), electronic structure calculations reproduce very well the experimental couplings for the S = 1/2 ferromagnetic and antiferromagnetic exchange-coupled 2D system: the calculated exchange parameters J are +1.25 $cm^{-1}$ and -3.07 $cm^{-1}$ for I and II, respectively. The $\sigma$ orbital interactions between the Cu $x^2-y^2$ magnetic orbitals and the nitrogen lone-pair orbitals of pyrazine are analyzed from the viewpoint of through-bond interaction. The energy splitting of 0.106 eV between two SOMOs indicates that the superexchange interaction should be antiferromagnetic in II. On the other hand, there are no bridging orbitals that efficiently connect the two copper(II) magnetic orbitals in I because the HOMOs of the basal-apical NCO bridge do not play a role in the formation of overlap interaction pathway. The energy separation in the pair of SOMOs of I is calculated to be very small (0.054 eV). This result is consistent with the occurrence of weakly ferromagnetic properties in I.