• Title/Summary/Keyword: Orbital Welding Process

Search Result 7, Processing Time 0.025 seconds

The Use of Orbital TIG Welding Process for the Construction and the Repair of Field Piping (자동 오비탈 TIG 용접기술을 이용한 배관 용접)

  • 정인철;심덕남
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.27-29
    • /
    • 2004
  • Orbital TIG welding process being used fur the new construction, the repair of nuclear piping system ana other critical piping. When weld quality is important or there are a large number of similar weld to be made or when access is restricted with manual torch, Orbital TIG welding is most effective process because of practical for out-of-position and high weld quality. Furthermore, typically superior to manual TIG welding process where the pipe remains in place and the tungsten electrode orbits the weld. As smaller and more compact welding head is being developed, could operate in tight spaces and lend itself to this type of application better than any other welding process. Orbital TIG welding has become more and more field practical process.

  • PDF

A study on the mapping between the feeding force of filter wire and welding position for the control of back bead shape in orbital TIG welding (원주 TIG 용접에서 이면 비드 형상 제어를 위한 Filter Wire 송급힘과 용접자세의 상관관계에 대한 연구)

  • 강선호;조형석;장희석;우승엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.792-795
    • /
    • 1996
  • In TIG welding of pipe, back bead size monitoring is important for weld quality assurance. Many researches have been performed on estimation of the back bead size by heat conduction analysis. However numerical conduction model based on many uncertain thermal parameters causes remarkable errors and thermomechanical phenomena in molten pool can not be considered. In this paper, filler wire feeding force in addition to weld current, wire feedrate, torch travel speed and orbital position angle is monitored to estimate back bead size in orbital TIG welding. Monitored welding process variables are fed into an artificial neural network estimator which has been trained with the monitored process variables (input patterns) and actual back bead size (output patterns). Experimental verification of the proposed estimation method was performed. The predicted results are in a good agreement with the actual back bead shape. The results are quite promising in that estimation of invisible back bead shape can be achieved by analyzing the welding parameters without any conventional NDT of welds.

  • PDF

The Characteristic Investigation on Narrow-gap TIG Weld Joint of Heavy wall Austenitic Stainless Steel Pipe (오스테나이트계 SS 배관의 협개선 TIG 용접부 특성 조사)

  • Shim, Deog-Nam;Jung, In-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.670-677
    • /
    • 2003
  • Although Gas Tungsten Arc Welding (GTAW or TIG welding) is considered as high quality and precision welding process, it also has demerit of low melting rate. Narrow-gap TIG welding which has narrow joint width reduces the groove volume remarkably, so it could be shorten the welding time and decrease the overall shrinkage in heavy wall pipe welding. Generally Narrow-gap TIG welding is used as orbital welding process, it is important to select the optimum conditions for the automatic control welding This paper looks at the application and metallurgical properties on Narrow-gap TIG welding joint of heavy wall large austenitic stainless steel pipe to determine the deposition efficiency, the resultant shrinkage and fracture toughness. The fracture toughness depends slightly on the welding heat input.

  • PDF

A Study on the Welds Characteristics of Stainless Steel 316L Pipe using Orbital Welding Process (오비탈 용접법을 적용한 STS 316L 파이프 소재의 용접부 특성에 관한 연구)

  • Lee, B.W.;Joe, S.M.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.71-77
    • /
    • 2010
  • This paper was studied on microstructure, mechanical properties and corrosion characteristics of 316L stainless steel pipe welds was fabricated by orbital welding process. S-Ar specimen was fabricated by using Ar purge gas and S-$N_2$ specimen was fabricated by using $N_2$ purge gas. Ferrite was not detected in weld metal of S-$N_2$ specimen but the order of 0.13 Ferrite number(FN) was detected in weld metal of S-Ar specimen. Oxygen and Nitrogen concentration of S-$N_2$ specimen was higher than S-Ar specimen on HAZ and inner bead. The welds microstructural characteristics of S-Ar and S-$N_2$ specimens are similar. The microvickers hardness values of S-Ar and S-$N_2$ specimens welds were similar and average values of each regions were in the range of 174~194. The microstructures of S-Ar and S-$N_2$ weld metal were full austenite by primary austenite solidification. The Solidification structures of S-Ar and S-$N_2$ weld metal were formed directional dendrite toward bead center. The potentiodynamic polarization curve of STS 316L pipe welds exhibited typical active, passive, transpassive behaviour. Corrosion current density$(I_{corr.})$ and corrosion rate values of S-Ar specimen in 0.1M HCl solution were $0.95{\mu}A/cm^2$ and $0.31{\mu}A$/year respectively. The values of S-$N_2$ specimen were $1.4{\mu}A/cm^2$ and $0.45{\mu}m$/year.

Fitting Pipe Flange Process Research Using Orbital Forming (오비탈 성형을 이용한 피팅 파이프 플랜지 공정연구)

  • Kim, TaeGual;Park, JoonHong;Park, YoungChul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.57-62
    • /
    • 2015
  • A large variety of pipe flanges are required in the marine and construction industry. Pipe flanges are usually welded or screwed to the pipe end and are connected with bolts. This approach is very simple and has been widely used for a long time; however, it results in high development costs and low productivity, and the products made through this approach usually have safety problems in the welding area. In this research, a new approach for forming pipe flanges based on cold forging and the floating die concept is presented. This innovative approach increases the effectiveness of the material usage and saves time and costs compared with the conventional welding method. To ensure the dimensional accuracy of the final product, finite element analysis (FEA) was carried out to simulate the process of cold forging, and orthogonal experiment methods were used to investigate the influence of four manufacturing factors (stroke of distance, pin die angle, forming of pipe diameter, and speed of the die) and predict the best combination of them. The manufacturing factors were obtained through numerical and experimental studies, which show that the approach is very useful and effective for the forming of pipe flanges and could be widely used in the future.

A Study on Optimum Shape of Shield Gas Nozzle for Bead Shape Control in TIG Welding using Gas Force (II) - Effect of Molten Metal Control by Venturi Nozzle in Overhead Position - (TIG용접에서 가스력을 이용한 비드형상제어를 위한 실드가스 노즐의 최적 형상에 관한 연구 (II) - 벤투리 노즐의 위보기 자세 용융금속제어 효과 -)

  • Ham, Hyo-Sik;Seo, Ji-Seok;Choi, Yoon-Hwan;Lee, Yeon-Won;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.58-63
    • /
    • 2011
  • Bead shape control with gas force process has been developed to overcome the concave back bead in pipe orbital welding. However, It is impossible to make a convex back bead using the existing gas nozzle, because it has high gas-consuming and low gas force. The purpose of this paper, to develop optimum shape of nozzle which to reduce the consumption of gas, maximizing the shield gas force with low cost and high productivity coincide the Green welding. In this paper venturi-type nozzle was compared with existing CP-type nozzle by TIG pulse welding in overhead position. As a result, CP-type occurs the wormholes in the overhead position, but the Venturi-type without the pore and formed a good bead appearance.

A Study on Optimum Shape of Shield Gas Nozzle for Bead Shape Control in TIG Welding using Gas Force (Ⅰ) - Design and Performance Analysis of Venturi Nozzle - (TIG용접에서 가스력을 이용한 비드형상제어를 위한 실드가스 노즐의 최적 형상에 관한 연구 (I) - 벤투리노즐의 설계 및 성능분석 -)

  • Ham, Hyo-Sik;Seo, Ji-Seok;Choi, Yoon-Hwan;Lee, Yeon-Won;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.51-57
    • /
    • 2011
  • Bead shape control with gas force process has been developed to overcome the concave back bead in pipe orbital welding. However, It is impossible to make a convex back bead using the existing gas nozzle, because it has high gas-consuming and low gas force. The purpose of this paper, to develop optimum shape of nozzle which to reduce the consumption of gas, maximizing the shield gas force with low cost and high productivity coincide the Green welding. In this paper venturi-type nozzle was designed by using the Venturi meter and compared velocity, pressure, arc shape in the flat position with existing CP-nozzle. As a result, Venturi-type nozzle's maximum velocity and pressure was improved at the same flow rate. Also heat input was increased by the arc contraction in the flat position.