• Title/Summary/Keyword: Orbit simulation

Search Result 277, Processing Time 0.024 seconds

Adaptive Compensation Method Using the Prediction Algorithm for the Doppler Frequency Shift in the LEO Mobile Satellite Communication System

  • You, Moon-Hee;Lee, Seong-Pal;Han, Young-Yearl
    • ETRI Journal
    • /
    • v.22 no.4
    • /
    • pp.32-39
    • /
    • 2000
  • In low earth orbit (LEO) satellite communication systems, more severe phase distortion due to Doppler shift is frequently detected in the received signal than in cases of geostationary earth orbit (GEO) satellite systems or terrestrial mobile systems. Therefore, an estimation of Doppler shift would be one of the most important factors to enhance performance of LEO satellite communication system. In this paper, a new adaptive Doppler compensation scheme using location information of a user terminal and satellite, as well as a weighting factor for the reduction of prediction error is proposed. The prediction performance of the proposed scheme is simulated in terms of the prediction accuracy and the cumulative density function of the prediction error, with considering the offset variation range of the initial input parameters in LEO satellite system. The simulation results showed that the proposed adaptive compensation algorithm has the better performance accuracy than Ali's method. From the simulation results, it is concluded the adaptive compensation algorithm is the most applicable method that can be applied to LEO satellite systems of a range of altitude between 1,000 km and 2,000 km for the general error tolerance level, M = 250 Hz.

  • PDF

Inter-lamina Shear Strength of MWNT-reinforced Thin-Ply CFRP under LEO Space Environment

  • Moon, Jin Bum;Kim, Chun-Gon
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.7-14
    • /
    • 2017
  • In this paper, the inter-lamina shear strength (ILSS) of multi-wall carbon nanotube (MWNT) reinforced carbon fiber reinforced plastics (CFRP) and thin-ply composites were verified under low earth orbit (LEO) space environment. CFRP, MWNT reinforced CFRP, thin-ply CFRP and MWNT reinforced thin-ply CFRP were tested after aging by using accelerated ground simulation equipment. The used ground simulation equipment can simulate high vacuum ($2.5{\times}10^{-6}torr$), atomic oxygen (AO, $9.15{\times}10^{14}atoms/cm^2{\cdot}s$), ultraviolet light (UV, 200 nm wave length) and thermal cycling ($-70{\sim}100^{\circ}C$) simultaneously. The duration of aging experiment was twenty hours, which is an equivalent duration to that of STS-4 space shuttle condition. After the aging experiment, ILSS were measured at room temperature ($27^{\circ}C$), high temperature ($100^{\circ}C$) and low temperature ($-100^{\circ}C$) to verify the effect of operation temperature. The MWNT and thin-ply shows good improvement of ILSS at ground condition especially with the thin-ply. And after LEO exposure large degradation of ILSS was observed at MWNT added composite due to the thermal cycle. And the degradation rate was much higher under the high temperature condition. But, at the low temperature condition, the ILSS was largely recovered due to the matrix toughening effect.

Development of Integrated Simulation Program for Artificial Satellite Operations by Modelica (Modelica를 이용한 인공위성 동작 통합시뮬레이션 프로그램 개발)

  • Jin, Jaehyun;Park, Bong-Kyu
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.3
    • /
    • pp.39-46
    • /
    • 2015
  • An integrated simulation program for an artificial satellite's operation has been developed. The program integrates and simulates orbit mechanics, attitude control, power/energy transition and mass variation. In the early stages of satellite development, this program can be used as a communication tool among design engineers of different fields. As a result, the efficiency to design a satellite is expected to increase. This program has been coded by Modelica language which supports acausal and object oriented programming methods. Libraries are developed for satellite simulation, and simulation results are presented.

TT&C Antenna Design for LEO Satellite (저궤도 위성용 TT&C 안테나의 설계)

  • Lee, Kwang-Jae;Woo, Duk-Jae;Lee, Taek-Kyung;Lee, Jae-Wook;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.642-650
    • /
    • 2010
  • In this paper, we study a TT&C link to obtain a required specifications of TT&C(Telemetry Tracking and Command system) antenna for an LEO(Low Earth Orbit) satellite. The premised mission orbit is the sun-synchronized and circular orbit and it performs earth-space observations. We design minimum TT&C link-budget to obtain required antenna beamwidth and gain. The proposed turnstile antenna provides wide beamwidth and circular polarization. We suggested the attaching position that shows the most effective results by confirming the variation of antenna performance when the proposed antenna is adapted to satellite's various positions. Also we proved the proposed antenna's ability while it is performing the mission through the orbit simulation based on the electrical performance of the proposed turnstile antenna.

Low-Earth orbit satellite constellation for ADS-B based in-flight aircraft tracking

  • Nguyen, Thien H.;Tsafnat, Naomi;Cetin, Ediz;Osborne, Barnaby;Dixon, Thomas F.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.95-108
    • /
    • 2015
  • Automatic Dependent Surveillance Broadcast (ADS-B) is quickly being adopted by aviation safety authorities around the world as the standard for aircraft tracking. The technology provides the opportunity for live tracking of aircraft positions within range of an ADS-B receiver stations. Currently these receiver stations are bound by land and local infrastructural constraints. As such there is little to no coverage over oceans and poles, over which many commercial flights routinely travel. A low cost space based ADS-B receiving system is proposed as a constellation of small satellites. The possibility for a link between aircraft and satellite is dependent primarily on proximity. Calculating the likelihood of a link between two moving targets when considering with the non-periodic and non-uniform nature of actual aircraft flight-paths is non-trivial. This analysis of the link likelihood and the performance of the tracking ability of the satellite constellation has been carried out by a direct simulation of satellites and aircraft. Parameters defining the constellation (satellite numbers, orbit size and shape, orbit configuration) were varied between reasonable limits. The recent MH370 disappearance was simulated and potential tracking and coverage was analysed using an example constellation. The trend of more satellites at a higher altitude inclined at 60 degrees was found to be the optimal solution.

Thermal Behavior of Spacecraft Liquid-Monopropellant Hydrazine($N_2$$H_4$) Propulsion System (인공위성 단기액체 하이드라진($N_2$$H_4$) 추진시스템의 열적 거동)

  • Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.1-11
    • /
    • 1999
  • Thermal behavior of spacecraft propulsion system utilizing monopropellant hydrazine ($N_2$$H_4$) is addressed in this paper. Thermal control performance to prevent propellant freezing in spacecraft-operational orbit was test-verified under simulated on-orbit environment. The on-orbit environment was thermally achieved in space-simulation chamber and by the absorbed-heat flux method that implements an artificial heating through to the spacecraft bus panels enclosing the propulsion system. Test results obtained in terms of temperature history of propulsion components are presented and reduced into duty cycles of the avionics heaters which are dedicated to thermal control of those components. The duty cycles are subsequently converted into the electrical power required in the operational orbit. Additionally, cyclic temperature of each component, which was made under thermal-balanced condition of spacecraft, is compared to the acceptable design range and justified from the viewpoint of system verification.

  • PDF

New Method for Station Keeping of Geostationary Spacecraft Using Relative Orbital Motion and Optimization Technique (상대 운동과 최적화 기법을 이용한 정지궤도 위치유지에 관한 연구)

  • Jung, Ok-Chul;No, Tae-Soo;Lee, Sang-Cherl;Yang, Koon-Ho;Choi, Seong-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.39-47
    • /
    • 2005
  • In this paper, a method of station keeping strategy using relative orbital motion and numerical optimization technique is presented for geostationary spacecraft. Relative position vector with respect to an ideal geostationary orbit is generated using high precision orbit propagation, and compressed in terms of polynomial and trigonometric function. Then this relative orbit model is combined with optimization scheme to propose a very efficient and flexible method of station keeping planning. Proper selection of objective and constraint functions for optimization can yield a variety of station keeping methods improved over the classical ones. Results from the nonlinear simulation have been shown to support such concept.

Performance Analysis of Low Earth Orbit Satellite Communication Systems Under Multi-path Fading Environments (다중경로 페이딩 환경하에서의 저궤도 위성통신시스템 성능 분석)

  • Hae-uk Lee;Young-bin Ryu;Hyuk-jun Oh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.410-416
    • /
    • 2023
  • Unlike geostationary satellite communication systems, low-earth orbit(LEO) satellite communication systems move at relatively high speeds, and the angle with the ground device is not fixed and varies over a wide range. The propagation channel condition between satellites and ground nodes cannot be assumed line of sight(LOS) anymore. This paper analyzes the low-orbit multi-path fading satellite channel model that can occur in LEO satellite communication systems and Doppler frequency transition caused by high-speed maneuvering of LEO satellites and presents effective equalization techniques for OFDM and SC-FDE transmission methods suitable for multi-path frequency selective fading satellite channel models. In addition, this paper compares and analyzes the performance of OFDM and SC-FDE transmission methods in multipath fading LEO satellite channel environment using the proposed equalization techniques through simulations. Simulation results showed that SC-FDE outpeformed OFDM.

Sensitivity of M/M/c Retrial Queue with Respect to Retrial Times : Experimental Investigation (M/M/c 재시도대기체계에서 재시도시간의 민감성에 대한 실험적 고찰)

  • Shin, Yang-Woo;Moon, Dug-Hee
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.2
    • /
    • pp.83-88
    • /
    • 2011
  • The effects of the moments of the retrial time to the system performance measures such as blocking probability, mean and standard deviation of the number of customers in service facility and orbit are numerically investigated. The results reveal some performance measures related with the number of customers in orbit can be severely affected by the fourth or higher moments of retrial time.

Application of Analytic Solution in Relative Motion to Spacecraft Formation Flying in Elliptic Orbit

  • Cho, Han-Cheol;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.255-266
    • /
    • 2008
  • The current paper presents application of a new analytic solution in general relative motion to spacecraft formation flying in an elliptic orbit. The calculus of variations is used to analytically find optimal trajectories and controls for the given problem. The inverse of the fundamental matrix associated with the dynamic equations is not required for the solution in the current study. It is verified that the optimal thrust vector is a function of the fundamental matrix of the given state equations. The cost function and the state vector during the reconfiguration can be analytically obtained as well. The results predict the form of optimal solutions in advance without having to solve the problem. Numerical simulation shows the brevity and the accuracy of the general analytic solutions developed in the current paper.