• Title/Summary/Keyword: Orbit simulation

Search Result 277, Processing Time 0.026 seconds

Development and Application of 3-Dimensional Shielding Analysis Program to Analyze Total Ionizing Dose Level depending on the Satellite Structure Model (위성구조모델에 따른 방사선 총 이온화 조사량 예측을 위한 3차원 차폐두께 분석 프로그램의 개발 및 응용)

  • Cho, Young-Jun;Lee, Chang-Ho;Lee, Choon-Woo;Hwang, Do-Soon
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.68-75
    • /
    • 2008
  • Space radiation environments depend on satellite mission orbit, period, and date, and it can be predicted by simulation. Total Ionizing Dose(TID) can be predicted by Dose-depth Curve which only inform the dose level depending on the shielding thickness. So detail effective shielding analysis considering real structure is necessary to predict part level TID. For this purpose, program is developed to calculate shielding thickness distribution by structure modeling and ray trace from certain point in the structure. Finally TID at certain point in the 3-dimensional structure can be calculated by integration of shielding distribution result and dose-depth curve data. Using this program, TID is analyzed at part level certain point by modeling of equipment box structure in the satellite.

  • PDF

Constellation Multi-Objective Optimization Design Based on QoS and Network Stability in LEO Satellite Broadband Networks

  • Yan, Dawei;You, Peng;Liu, Cong;Yong, Shaowei;Guan, Dongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1260-1283
    • /
    • 2019
  • Low earth orbit (LEO) satellite broadband network is a crucial part of the space information network. LEO satellite constellation design is a top-level design, which plays a decisive role in the overall performance of the LEO satellite network. However, the existing works on constellation design mainly focus on the coverage criterion and rarely take network performance into the design process. In this article, we develop a unified framework for constellation optimization design in LEO satellite broadband networks. Several design criteria including network performance and coverage capability are combined into the design process. Firstly, the quality of service (QoS) metrics is presented to evaluate the performance of the LEO satellite broadband network. Also, we propose a network stability model for the rapid change of the satellite network topology. Besides, a mathematical model of constellation optimization design is formulated by considering the network cost-efficiency and stability. Then, an optimization algorithm based on non-dominated sorting genetic algorithm-II (NSGA-II) is provided for the problem of constellation design. Finally, the proposed method is further evaluated through numerical simulations. Simulation results validate the proposed method and show that it is an efficient and effective approach for solving the problem of constellation design in LEO satellite broadband networks.

Fairness-Based Beam Bandwidth Allocation for Multi-Beam Satellite Communication System (다중 빔 위성 통신 시스템을 위한 공평성 기반 빔 대역폭 할당)

  • Jung, Dong-Hyun;Ryu, Joon-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1632-1638
    • /
    • 2020
  • In this paper, we investigate a multi-beam satellite communication system where multiple terminals transmit information signals to the gateway via a satellite. The satellite is equipped with phased array antennas to form multiple spot beams of which bandwidths are not identically allocated. We formulate an optimization problem to maximize fairness of beam bandwidth allocation. In order to solve the problem, we propose two heuristic algorithms; iterative beam bandwidth allocation (IBBA) and request ratio-based beam bandwidth allocation (RRBBA) algorithms. The IBBA algorithm iteratively equalizes the ratio of allocated bandwidth of each beam to their resource request while the RRBBA algorithm allocates beam bandwidth calculated from the ratio. Simulation results show that the IBBA algorithm has close fairness performance to the optimum while the RRBBA algorithm has less performance than the IBBA algorithm at the price of reduced computational complexity.

Calculation of Satellite's Power Generation by the Earth Albedo (지구 알베도에 의한 위성의 생산전력 계산)

  • Choi, Won-Sub;Kim, Kiduck;Kim, Hae-Dong
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.76-84
    • /
    • 2021
  • Because solar panels of normal satellites are faced to the sun, the power generation by the Earth Albedo is almost neglected in satellite's power analysis. However, many cubesats don't have deployable solar panels and in this case the Earth Albedo is not negligible because solar panels are in six sides facing different directions. In this paper, we calculated satellite's power generation by the Earth Albedo. We divided the Earth's surface into grids based on polar coordinate system. We modeled power generation in each solar cell by reflection on these grids. We simulated 1 U cubesat which flies in sun synchronous orbit and 500 km altitude so that we calculated satellite's power generation by the Earth Albedo.

Performance Analysis of the Gamma Guidance Algorithm for Solid Rocket Kick Motors of Upper Stages of Space Launch Vehicles (위성발사체 상단의 고체로켓모터 유도를 위한 Gamma 유도 알고리듬 성능 분석)

  • Song, Eun-Jung;Cho, Sangbum;Sun, Byung-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.709-716
    • /
    • 2022
  • In this paper the Gamma guidance law, which was used for IUS (Inertial Upper Stage), is applied for solid-motor guidance of a upper stage of a satellite launch vehicle. The RCS (Reaction Control System), which activates after burnout of the upper stage, is employed for the convergence of the guidance algorithm and compensation of velocity errors induced by the solid motor. The algorithm is also simplified by replacing the time-consuming numerical integration process to predict final vehicle states with Keplerian trajectories. The performance of the algorithm is evaluated by conducting 3-DOF computer simulations for off-nominal flight conditions. The numerical results show that Gamma guidance can reduce the orbit injection accuracy in comparison with that obtained by applying open-loop commands.

Performance Assessment of GBAS Ephemeris Monitor for Wide Faults (Wide Fault에 대한 GBAS 궤도 오차 모니터 성능 분석)

  • Junesol Song;Carl Milner
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.189-197
    • /
    • 2024
  • Galileo is a European Global Navigation Satellite System (GNSS) that has offered the Galileo Open Service since 2016. Consequently, the standardization of GNSS augmentation systems, such as Satellite Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), and Aircraft Based Augmentation System (ABAS) for Galileo signals, is ongoing. In 2023, the European Union Space Programme Agency (EUSPA) released prior probabilities of a satellite fault and a constellation fault for Galileo, which are 3×10-5 and 2×10-4 per hour, respectively. In particular, the prior probability of a Galileo constellation fault is significantly higher than that for the GPS constellation fault, which is defined as 1×10-8 per hour. This raised concerns about its potential impact on GBAS integrity monitoring. According to the Global Positioning System (GPS) Standard Positioning Service Performance Standard (SPS PS), a constellation fault is classified as a wide fault. A wide fault refers to a fault that affects more than two satellites due to a common cause. Such a fault can be caused by a failure in the Earth Orientation Parameter (EOP). The EOP is used when transforming the inertial axis, on which the orbit determination is based, to Earth Centered Earth Fixed (ECEF) axis, accounting for the irregularities in the rotation of the Earth. Therefore, a faulty EOP can introduce errors when computing a satellite position with respect to the ECEF axis. In GNSS, the ephemeris parameters are estimated based on the positions of satellites and are transmitted to navigation satellites. Subsequently, these ephemeris parameters are broadcasted via the navigation message to users. Therefore, a faulty EOP results in erroneous broadcast ephemeris data. In this paper, we assess the conventional ephemeris fault detection monitor currently employed in GBAS for wide faults, as current GBAS considers only single failure cases. In addition to the existing requirements defined in the standards on the Probability of Missed Detection (PMD), we derive a new PMD requirement tailored for a wide fault. The compliance of the current ephemeris monitor to the derived requirement is evaluated through a simulation. Our findings confirm that the conventional monitor meets the requirement even for wide fault scenarios.

Usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit (안와 주변 방사선 치료 시 수정체 피폭선량 감소를 위한 2차 차폐의 유용성 평가)

  • Kwak, Yong Kuk;Hong, Sun Gi;Ha, Min Yong;Park, Jang Pil;Yoo, Sook Hyun;Cho, Woong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.87-95
    • /
    • 2015
  • Purpose : This study presents the usefulness assessment of secondary shield for the lens exposure dose reduction during radiation treatment of peripheral orbit. Materials and Methods : We accomplished IMRT treatment plan similar with a real one through the computed treatment planning system after CT simulation using human phantom. For the secondary shield, we used Pb plate (thickness 3mm, diameter 25mm) and 3 mm tungsten eye-shield block. And we compared lens dose using OSLD between on TPS and on simulation. Also, we irradiated 200 MU(6 MV, SPD(Source to Phantom Distance)=100 cm, $F{\cdot}S\;5{\times}5cm$) on a 5cm acrylic phantom using the secondary shielding material of same condition, 3mm Pb and tungsten eye-shield block. And we carried out the same experiment using 8cm Pb block to limit effect of leakage & transmitted radiation out of irradiation field. We attached OSLD with a 1cm away from the field at the side of phantom and applied a 3mm bolus equivalent to the thickness of eyelid. Results : Using human phantom, the Lens dose on IMRT treatment plan is 315.9cGy and the real measurement value is 216.7cGy. And after secondary shield using 3mm Pb plate and tungsten eye-shield block, each lens dose is 234.3, 224.1 cGy. The result of a experiment using acrylic phantom, each value is 5.24, 5.42 and 5.39 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Applying O.S.B out of the field, each value is 1.79, 2.00 and 2.02 cGy in case of no block, 3mm Pb plate and tungsten eye-shield block. Conclusion : When secondary shielding material is used to protect critical organ while irradiating photon, high atomic number material (like metal) that is near by critical organ can be cause of dose increase according to treatment region and beam direction because head leakage and collimator & MLC transmitted radiation are exist even if it's out of the field. The attempt of secondary shield for the decrease of exposure dose was meaningful, but untested attempt can have a reverse effect. So, a preliminary inspection through Q.A must be necessary.

  • PDF

Property of Focal Spot of Electron Beam Depending on the Anode Angle of X-ray Tube Using a Finite Element Method (유한요소법을 이용한 X-선관 양극각도에 의존하는 전자빔 초점 특성 연구)

  • Park, Tae-Young;Noh, Young-Il;Lee, Sang-Suk;Park, Rae-Jun;Kim, Ki-Seon
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • The focal spot of electron beam depending on the anode angle in the structure and major parts of the X-ray tube was investigated by the OPERA-3D/SCALAR simulation program. The simulation worked on four spaces with with two spaces, including anode and cathode of X-ray tube, by applying the finite element method analysis. The analytical model and dimension for the emission orbit of thermal electrons made from one filament of the focused X-ray cathode is affected to the penumbra of detector for the X-ray depending on any real focal spot size. The model shape of focusing cap and focusing tube with an anode target angle and a cathode filament is analyzed by the current density distribution of thermal electrons. The focusing width of thermal electrons for the X-ray tube depended on the anode angle (${\theta}$). The focusing value of electron beams at a region of anode angle having $10^{\circ}{\sim}17^{\circ}$ maintained to below value of $70{\mu}m$. The minimum focal size of the electron beam was $40{\mu}m$ at an anode angle of $15^{\circ}$. The focused X-ray tube of many variables depended on the thermionic emission of hot electrons from the target trajectory. The focusing tube will contribute to the real design of X-ray for the development of future diagnosis medical device.

Concatenated Diversity System for Bandwidth Efficient Communication of Flight Type Air Node in Unstable Channel Environments (비정형 통신 채널 환경에서 비행형 에어노드의 대역 효율적인 통신을 위한 연접 다이버시티 시스템)

  • Kang, Chul-Gyu;Park, Jin-Hee;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.247-254
    • /
    • 2012
  • In this paper, we propose a concatenated diversity system to assure the data transmission reliability between flight type air nodes which move according to their atypical orbit, then its performance is analyzed using computer simulation and it is designed with hdl. The proposed system cannot only improve a bandwidth efficient and coding gain from diversity TCM code but also the reliability of data transmission is high. From the computer simulation result about bit error rate(BER) of the proposed system, we confirm that its BER performance is about 11dB greater than TCM code at $10^{-2}$ and about 11dB greater than space time block code at $10^{-3}$ which has a full diversity gain. In addition, when we compare its BER performance with space time trellis code which has both a diversity gain and a coding gain, the performance of the proposed system is greater than about 1.5dB at $10^{-5}$. Lastly, after designing the proposed system with HDL, we can confirm that the operation result is correct.

Minimization of Motion Blur and Dynamic MTF Analysis in the Electro-Optical TDI CMOS Camera on a Satellite (TDI CMOS 센서를 이용한 인공위성 탑재용 전자광학 카메라의 Motion Blur 최소화 방법 및 Dynamic MTF 성능 분석)

  • Heo, HaengPal;Ra, SungWoong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.85-99
    • /
    • 2015
  • TDI CCD sensors are being used for most of the electro-optical camera mounted on the low earth orbit satellite to meet high performance requirements such as SNR and MTF. However, the CMOS sensors which have a lot of implementation advantages over the CCD, are being upgraded to have the TDI function. A few methods for improving the issue of motion blur which is apparent in the CMOS sensor than the CCD sensor, are being introduced. Each pixel can be divided into a few sub-pixels to be read more than once as is the same case with three or four phased CCDs. The fill factor can be reduced intentionally or even a kind of mask can also be implemented at the edge of pixels to reduce the blur. The motion blur can also be reduced in the TDI CMOS sensor by reducing the integration time from the full line scan time. Because the integration time can be controlled easily by the versatile control electronics, one of two performance parameters, MTF and SNR, can be concentrated dynamically depending on the aim of target imaging. MATLAB simulation has been performed and the results are presented in this paper. The goal of the simulation is to compare dynamic MTFs affected by the different methods for reducing the motion blur in the TDI CMOS sensor.