• Title/Summary/Keyword: Orbit simulation

Search Result 276, Processing Time 0.02 seconds

Satellite finite element model updating for the prediction of the effect of micro-vibration (미소진동 영향성 예측을 위한 인공위성 유한요소모델 보정)

  • Lim, Jae Hyuk;Eun, Hee-Kwang;Kim, Dae-Kwan;Kim, Hong-Bae;Kim, Sung-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.692-700
    • /
    • 2014
  • In this work, satellite FE (finite element) model updating for the prediction of the effect of micro-vibration is described. In the case of satellites launched in low earth orbit, high agility and more mission accomplishments are required by the customer in order to procure many images from satellites. To achieve the goal, many mechanisms, including high capacity wheels and antennas with multi-axis gimbals have been widely adopted, but they become a source of micro-vibration which could significantly deteriorate the quality of images. To investigate the effect due to the micro-vibration in orbit on the ground, a prediction is conducted through an integrated model coupling the measured jitter sources with FE (finite element) model. Before prediction, the FE model is updated to match simulation results with the modal survey test. Subsequently, the quality of FE model is evaluated in terms of frequency deviation error, the resemblance of mode shapes and FRFs (frequency response functions) between test and analysis.

Estimation of Simulated Radiances of the OSMI over the Oceans (대양에서의 OSMI 모의 복사량 산출)

  • 임효숙;김용승;이동한
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.3
    • /
    • pp.227-238
    • /
    • 1999
  • In advance of launch, simulated radiances of the Ocean Scanning Multispectral Imager (OSMI) will be very useful to guess the real imagery of OSMI and to prepare for data processing of OSMI. The data processing system for OSMI which is one of sensors aboard Korea Multi-Purpose Satellite (KOMPSAT) scheduled for launch in 1999 is developed based on the SeaWiFS Data Analysis System (SeaDAS). Simulation of radiances requires information on the spectral band, orbital and scanning characteristics of the OSMI and KOMPSAT spacecraft. This paper also describes a method to create simulated radiances of the OSMI over the oceans. Our method for constructing a simulated OSMI imagery is to propagate a KOMPSAT orbit over a field of Coastal Zone Color Scanner (CZCS) pigment concentrations and to use the values and atmospheric components for calculation of total radiances. A modified Brouwer-Lyddane model with drag was used for the realistic orbit prediction, the CZCS pigment concentrations were used to compute water-leaving radiances, and a variety of radiative transfer models were used to calculate atmospheric contributions to total radiances detected by OSMI. Imagery of the simulated OSMI radiances for 412, 443, 490, 555, 765, 865nm was obtained. As expected, water-leaving radiances were only a small fraction (below 10%) of total radiances and sun glint contaminations were observed near the solar declination. Therefore, atmospheric correction is critical in the calculation of pigment concentration from total radiances. Because the imagery near the sun's glitter pattern is virtually useless and must be discarded, more advanced data collection planning will be required to succeed in the mission of OSMI which is consistent monitoring of global oceans during three year mission lifetime.

Simulation and Evaluation of the KOMPSAT/OSMI Radiance Imagery (다목적 실용위성 해색센서 (OSMI)의 복사영상에 대한 모의 및 평가)

  • 반덕로;김용승
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.131-146
    • /
    • 1999
  • The satellite visible data have been successfully applied to study the ocean color. Another ocean color sensor, the Ocean Scanning Multi-spectral Imager (OSMI) on the Korea Multi-Purpose Satellite (KOMPSAT) will be launched in 1999. In order to understand the characteristics of future OSMI images, we have first discussed the simulation models and procedures in detail, and produced typical patterns of radiances at visible bands by using radiative transfer models. The various simulated images of full satellite passes and Korean local areas for different seasons, water types, and the satellite crossing equator time (CET) are presented to illustrate the distribution of each component of radiance (i.e., aerosol scattering, Rayleigh scattering, sun glitter, water-leaving radiance, and total radiance). A method to evaluate the image quality and availability is then developed by using the characteristics of image defined as the Complex Signal Noise Ratio (CSNR). Meanwhile, a series of CSNR images are generated from the simulated radiance components for different cases, which can be used to evaluate the quality and availability of OSMI images before the KOMPSAT will be placed in orbit. Finally, the quality and availability of OSMI images are quantitatively analyzed by the simulated CSNR image. It is hoped that the results would be useful to all scientists who are in charge of OSMI mission and to those who plan to use the data from OSMI.

MULTI-PHYSICAL SIMULATION FOR THE DESIGN OF AN ELECTRIC RESISTOJET GAS THRUSTER IN THE NEXTSAT-1 (차세대 인공위성 전기저항제트 가스추력기의 다물리 수치모사)

  • Chang, S.M.;Choi, J.C.;Han, C.Y.;Shin, G.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • NEXTSat-1 is the next-generation small-size artificial satellite system planed by the Satellite Technology Research Center(SatTReC) in Korea Advanced Institute of Science and Technology(KAIST). For the control of attitude and transition of the orbit, the system has adopted a RHM(Resisto-jet Head Module), which has a very simple geometry with a reasonable efficiency. An axisymmetric model is devised with two coil-resistance heaters using xenon(Xe) gas, and the minimum required specific impulse is 60 seconds under the thrust more than 30 milli-Newton. To design the module, seven basic parameters should be decided: the nozzle shape, the power distribution of heater, the pressure drop of filter, the diameter of nozzle throat, the slant length and the angle of nozzle, and the size of reservoir, etc. After quasi one-dimensional analysis, a theoretical value of specific impulse is calculated, and the optima of parameters are found out from the baseline with a series of multi-physical numerical simulations based on the compressible Navier-Stokes equations for gas and the heat conduction energy equation for solid. A commercial code, COMSOL Multiphysics is used for the computation with a FEM (finite element method) based numerical scheme. The final values of design parameters indicate 5.8% better performance than those of baseline design after the verification with all the tuned parameters. The present method should be effective to reduce the time cost of trial and error in the development of RHM, the thruster of NEXTSat-1.

Roll/Yaw Momentum Management Method of Pitch Momentum Biased Spacecraft (피치 모멘텀 바이어스 위성시스템의 롤/요축 모멘텀 제어방식)

  • Rhee, Seung-Wu;Ko, Hyun-Chul;Jang, Woo-Young;Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.669-677
    • /
    • 2009
  • In general, the pitch momentum biased system that induces inherently nutational motion in roll/yaw plane, has been adapted for geosynchronous communications satellites. This paper discusses the method of roll attitude control using yaw axis momentum management method for a low earth orbit(LEO) satellite which is a pitch momentum biased system equipped with only two reaction wheels. The robustness of wheel momentum management method with PI-controller is investigated comparing with wheel torque control method. The transfer function of roll/yaw axis momentum management system that is useful for attitude controller design is derived. The disturbance effect of roll/yaw axis momentum management system for attitude control is investigated to identify design parameters such as magnitude of momentum bias and to get the insight for controller design. As an example, the PID controller design result of momentum management system for roll/yaw axis control is provided and the simulation results are presented to provide further physical insight into the momentum management system.

Development and Performance Validation of Thermal Control Subsystem for Earth Observation Small Satellite Flight Model (지구관측 소형위성 비행모델의 열제어계 개발 및 성능 검증)

  • Chang, Jin-Soo;Jeong, Yun-Hwang;Kim, Byung-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1222-1228
    • /
    • 2008
  • A small satellite, DubaiSat-1 FM(Flight Model), which is based on SI-200 standard bus platform and scheduled to be launched in 2008, is being developed by Satrec Initiative and EIAST(Emirates Institution for Advanced Science and Technology). The TCS(Thermal Control Subsystem) of DubaiSat-1 FM has been designed to mainly utilize passive thermal control in order to minimize power consumption, but the active control method using heaters has been applied to some critical parts. Also, thermal analysis has been performed for DubaiSat-1's mission orbit using a thermal analysis model. The thermal design is modified and optimized to satisfy the design temperature requirements for all parts according to the analysis result. The thermal control performance of DubaiSat-1 FM is verified by thermal vacuum space simulation, consisting of thermal cycling and thermal balance test. Also, to validate the thermal modeling of DubaiSat-1 FM, comparison of test results with analysis has been performed and model calibration has been completed.

Analysis on Frequency Sharing between LEO Satellite Network and FS System in Space-to-Earth Direction (저궤도 위성망과 FS 시스템의 주파수 공유 방안 연구)

  • Gam, Hye-Mi;Oh, Dae-Sub;Ahn, Do-Seob
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1279-1286
    • /
    • 2009
  • This paper addresses the analysis of the interference produced between the LEO(Low Earth Orbit) satellite constellation and FS(Fixed Service) system operating in the same frequency and area. At first, we calculates the interference of FS system from the LEO satellite constellation depending on the number of LEO satellite antenna beams. Simulation results show that the amount of interference that was calculated from each region. This result can be used to define the carrier level for protecting FS system from total interference by LEO satellite constellation. In the second scenario, we calculates the interference of LEO satellite system earth station by the FS link depending on radius of protection area. The presented results can be used to design FS systems minimizing interference to earth station.

Improvement of Success Rate on LEO Satellite Attitude Determination Using GPS Carrier Phase Measurements (GPS를 이용한 저궤도 위성 자세 결정의 미지정수 결정 성공확률 향상)

  • Lee, Eun-Sung;Chun, Se-Bum;Lee, Young-Jea;Kang, Tea-Sam;Jee, Gyu-In;Jun, Hyang-Sig;Joo, Jung-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.45-50
    • /
    • 2005
  • To determine precise position GPS carrier phase measurements are used. In addition, the multi-antenna system consisting of 2 or more GPS antennas can make attitude determination effectively. When GPS carrier phase measurements are used the integer ambiguity must be fixed. The success rate is used to validate the integer ambiguity. For LEO satellite attitude determination the double difference carrier phase measurements are used, the success rate is calculated using the covariance matrix and the measurement matrix. The constraint that LEO satellite position vector and attitude vector is orthogonal is suggested for improving the success rate. The LEO satellite orbit model is KITSAT3. The results of the simulation are shown and analyzed.

Design of the COMS Satellite Ground Control System (통신해양기상위성 관제시스템 설계)

  • Lee, Byeong-Seon;Jeong, Won-Chan;Lee, Sang-Uk;Lee, Jeom-Hun;Kim, Jae-Hun
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.16-24
    • /
    • 2006
  • As a multi-mission GEO satellite, COMS system is being developed jointly by KARI, ETRI, KORDI, KMA, and industries from both abroad and domestic. EADS ASRTIUM is the prime contractor for manufacturing the COMS. ETRI is developing the COMS Ka-band payload and SGCS with the fund from MIC. COMS Satellite Ground Control System (SGCS) will be the only system for monitor and control of the satellite in orbit. In order to fulfill the mission operations of the three payloads and spacecraft bus, COMS SGCS performs telemetry reception and processing, satellite tracking and ranging, command generation and transmission, satellite mission planning, flight dynamics operations, and satellite simulation, By the proper functional allocations, COMS SGCS is divided into five subsystems such as TTC, ROS, MPS, FDS, and CSS. In this paper, functional design of the COMS SGCS is described as five subsystems and the interfaces among the subsystems.

  • PDF

CORRECTION OF THE TRACKING DATA OF AN ARTIFICIAL SATELLITE CONSIDERING THE EARTH ATMOSPHERE AND LIGHT TIME EFFECTS (지구 대기와 광시간 효과를 고려한 인공위성 추적자료의 보정 S/W 개발)

  • 김경희;김천휘;김성규
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.123-132
    • /
    • 1995
  • We developed a S/W system to simulate the orbit tracking data as nearly equal as the real data obtained at the tracking antenna by modeling various causes that could have effects on the tracking data (range, range rate, azimuth, elevation) of an artificial satellite. Using the S/W developed we produced delay values of tracking data due to the light-time effect and the terrestrial atmosphere. According to the simulation results due to the Earth atmosphere, the values delayed by the troposhpere were increased as the temperature, relative humidity, and pressure of the troposphere are more larger. However, delay values due to the ionosphere were dependent on both the maximum electron density and the frequencies used. They are more and more increased as the maximum electron density and frequency are more larger. And the delaying values by the light-time effect are more larger by the fast orbital motion as the altitude of an artificial satellite is more lower.

  • PDF