• Title/Summary/Keyword: Orbit and Attitude Dynamics

Search Result 16, Processing Time 0.03 seconds

Simulation of Spacecraft Attitude Measurement Data by Modeling Physical Characteristics of Dynamics and Sensors

  • Lee, Hun-Gu;Yoon, Jae-Cheol;Cheon, Yee-Jin;Shin, Dong-Seok;Lee, Hyun-Jae;Lee, Young-Ran;Bang, Hyo-Choong;Lee, Sang-Ryool
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1966-1971
    • /
    • 2004
  • As the remote sensing satellite technology grows, the acquisition of accurate attitude and position information of the satellite has become more and more important. Due to the data processing limitation of the on-board orbit propagator and attitude determination algorithm, it is required to develop much more accurate orbit and attitude determination, which are so called POD (precision orbit determination) and PAD (precision attitude determination) techniques. The sensor and attitude dynamics simulation takes a great part in developing a PAD algorithm for two reasons: 1. when a PAD algorithm is developed before the launch, realistic sensor data are not available, and 2. reference attitude data are necessary for the performance verification of a PAD algorithm. A realistic attitude dynamics and sensor (IRU and star tracker) outputs simulation considering their physical characteristics are presented in this paper, which is planned to be used for a PAD algorithm development, test and performance verification.

  • PDF

ATTITUDE DETERMINATION AND CONTROL SYSTEM OF KITSAT-1 (우리별 1호의 자세제어 시스템)

  • 이현우;김병진;박동조
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.67-81
    • /
    • 1996
  • The attitude dynamics of KITSAT-1 are modeled including the gravity gradient stabilization method. We define the operation scenario during the initial attitude stabilization period by means of a magnetorquering control algorithm. The required constraints for the gravity gradient boom deployment are also examined. Attitude dynamics model and control laws are verified by analyzing in-orbit attitude sensor telemetry data.

  • PDF

Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

  • Song, Young-Joo;Bae, Jonghee;Kim, Young-Rok;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.323-333
    • /
    • 2016
  • In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the $1^{st}$ lunar orbit insertion (LOI) maneuver of the Korea Pathfinder Lunar Orbiter (KPLO) mission. During the early design phase of the system, associate analysis is an essential design factor as the $1^{st}$ LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the $1^{st}$ LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the $1^{st}$ elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC) maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground control center, are expected to be prepared and established based on the current results, including a contingency trajectory design plan.

Assessment of Earth Remote Sensing Microsatellite Power Subsystem Capability during Detumbling and Nominal Modes

  • Zahran M.;Okasha M.;Ivanova Galina A.
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.18-28
    • /
    • 2006
  • The Electric Power Subsystem (EPS) is one of the most critical systems on any satellite because nearly every subsystem requires power. This makes the choice of power systems the most important task facing satellite designers. The main purpose of the Satellite EPS is to provide continuous, regulated and conditioned power to all the satellite subsystems. It has to withstand radiation, thermal cycling and vacuums in hostile space environments, as well as subsystem degradation over time. The EPS power characteristics are determined by both the parameters of the system itself and by the satellite orbit. After satellite separation from the launch vehicle (LV) to its orbit, in almost all situations, the satellite subsystems (attitude determination and control, communication and onboard computer and data handling (OBC&DH)), take their needed power from a storage battery (SB) and solar arrays (SA) besides the consumed power in the EPS management device. At this point (separation point, detumbling mode), the satellite's angular motion is high and the orientation of the solar arrays, with respect to the Sun, will change in a non-uniform way, so the amount of power generated by the solar arrays will be affected. The objective of this research is to select satellite EPS component types, to estimate solar array illumination parameters and to determine the efficiency of solar arrays during both detumbling and normal operation modes.

Three-axis Attitude Control for Flexible Spacecraft by Lyapunov Approach under Gravity Potential

  • Bang, Hyo-Choong;Lee, Kwang-Hyun;Lim, Hyung-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.99-109
    • /
    • 2003
  • Attitude control law synthesis for the three-axis attitude maneuver of a flexible spacecraft model is presented in this study. The basic idea is motivated by previous works for the extension into a more general case. The new case includes gravitational gradient torque which has significant effect on a wide range of low earth orbit missions. As the first step, the fully nonlinear dynamic equations of motion are derived including gravitational gradient. The control law design based upon the Lyapunov approach is attempted. The Lyapunov function consists of a weighted combination of system kinetic and potential energy. Then, a set of stabilizing control law is derived from the basic Lyapunov stability theory. The new control law is therefore in a general form partially validating the previous work in some sense.

Numerical analysis of the attitude stability of a charged spacecraft in the Pitch-Roll-Yaw directions

  • Abdel-Aziz, Yehia A.;Shoaib, Muhammad
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.82-90
    • /
    • 2014
  • In this paper, the effect of Lorentz force on the stability of attitude orientation of a charged spacecraft moving in an elliptic orbit in the geomagnetic field is considered. Euler equations are used to derive the equations of attitude motion of a charged spacecraft. The equilibrium positions and its stability are investigated separately in the pitch, roll and yaw directions. In each direction, we use the Lorentz force to identify an attitude stabilization parameter. The analytical methods confirm that we can use the Lorentz force as a stabilization method. The charge-to-mass ratio is the main key of control, in addition to the components of the radius vector of the charged center of the spacecraft, relative to the center of mass of the spacecraft. The numerical results determine stable and unstable equilibrium positions. Therefore, in order to generate optimum charge, which may stabilize the attitude motion of a spacecraft, the amount of charge on the surface of spacecraft will need to be monitored for passive control.

Dynamics Modeling and Simulation of Korean Communication, Ocean, and Meteorology Satellite

  • No, Tae-Soo;Lee, Sang-Uk;Kim, Sung-Ju
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.89-97
    • /
    • 2007
  • COMS(Communication, Oceanography, and Meteorology Satellite) is the first Korean multi-purpose satellite which is planned to be deployed at the altitude of geosynchronous orbit above the Korean peninsular. Noting that COMS is composed of the main BUS structure, two deployable solar panels, one yoke, five reactions wheels, COMS is treated as a collection of 9 bodies and its nonlinear equations of motion are obtained using the multi-body dynamics approach. Also, a computer program is developed to analyze the COMS motion during the various mission phase. Quite often, the equations of motion have to be derived repeatedly to reflect the fact that the spacecraft dynamics change as its configuration, and therefore its degree of freedom varies. However, the equations of motion and simulation software presented in this paper are general enough to represent the COMS dynamics of various configurations with a minimum change in input files. There is no need to derive the equations of motion repeatedly. To show the capability of the simulation program, the spacecraft motion during the solar array partial and full deployment has been simulated and the results are summarized in this paper.

Development of VDS for Geosynchronous Satellite and Verification using PILS & HILS (정지궤도위성 실시간 동역학 시뮬레이터 개발 및 연동시험을 통한 검증)

  • Park, Yeong-Ung;Gu, Ja-Chun;Choe, Jae-Dong;Gu, Cheol-Hoe;Park, Bong-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.103-109
    • /
    • 2006
  • In this paper, VDS(Vehicle Dynamics Simulator) and ACS(Attitude Control Simulator) are developed and are verified using PILS(Process In-the Loop Simulation) between VDS and ACS. VDS is including the AOCS(Attitude & Orbit Control Subsystem) hardware modeling of geosynchronous satellite and consists of modulation concept. ACS performs the attitude determination using sensor data and generates the attitude control commands. In order to transfer the data between VDS and PCDU(Power Control & Distribution Unit), data acquisition boards were mounted. VDS performance is verified using HILS(Hardware In-the Loop Simulation) between VDS and PCDU.

Development of KOMPSAT-2 Vehicle Dynamic Simulator for Attitude Control Subsystem Functional Verification

  • Suk, Byong-Suk;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1465-1469
    • /
    • 2003
  • In general satellite verification process, the AOCS (Attitude & Orbit Control Subsystem) should be verified through several kinds of verification test which can be divided into two major category like FBT (Fixed Bed Test) and polarity test. And each test performed in different levels such as ETB (Electrical Test Bed) and satellite level. The test method of FBT is to simulate satellite dynamics with sensors and actuators supported by necessary environmental models in ETB level. The VDS (Vehicle Dynamic Simulator) try to make the real situation as possible as the on-board processor will undergo after launch. The purpose of FBT test is to verify that attitude control logic function and hardware interface is designed as expected with closed loop simulation. The VDS is one of major equipments for performing FBT and consists of software and hardware parts. The VDS operates in VME environments with target board, several commercial boards and custom boards based on the VxWorks real time operating system. In order to make time synchronization between VDS and satellite on-board processor, high reliable semaphore was implemented to make synchronization with the interrupt signal from on-board processor. In this paper, the real-time operating environment used on VDS equipment is introduced, and the hardware and software configurations of VDS summarized in the systematic point of view. Also, we try to figure out the operational concept of VDS and AOCS verification test method with close-loop simulation.

  • PDF

Unscented Kalman Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Park, Sang-Young;Abdelrahman, Mohammad;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.36.1-36.1
    • /
    • 2008
  • An Unscented Kalman Filter(UKF) for estimation of attitude and rate of a spacecraft using only magnetometer vector measurement is presented. The dynamics used in the filter is nonlinear rotational equation which is augmented by the quaternion kinematics to construct a process model. The filter is designed for low Earth orbit satellite, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. To stabilize the attitude, linear PD controller is applied and the actuator is assumed to be thruster. A Monte-Carlo simulation has been done to guarantee the stability of the filter performance to the various initial conditions. The UKF performance is compared to that of EKF and it reveals that UKF outperforms EKF.

  • PDF