• Title/Summary/Keyword: Orbit Determination Accuracy

Search Result 88, Processing Time 0.026 seconds

Orbit Determination of GEO-KOMPSAT-2A Geostationary Satellite (천리안위성 2A호 지구정지궤도위성 궤도결정)

  • Yongrae Kim;Sang-Cherl Lee;Jeongrae Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.199-206
    • /
    • 2024
  • The GEO-KOMPSAT-2A (GK2A) satellite, which was launched in December 2018, carries weather observation payloads and uses the image navigation and registration system to calibrate the observation images. The calibration system requires accurate orbit prediction data and depends on the accuracy of the orbit determination accuracy. In order to find a possible way to improve the current orbit determination accuracy of the GK2A flight dynamic subsystem module, orbit determination software was developed to independently evaluate the orbit determination accuracy. A comprehensive satellite dynamic model is applied for a batch-type least squares filter. When determining the orbit, thrust firing during station-keeping maneuvers and wheel-off loading maneuvers is taken into account. One month of GK2A ranging data were processed to estimate the satellite position on a daily basis. The orbit determination error was evaluated by comparing estimates during overlapping estimation intervals.

Evaluation of KOMPSAT-1 Orbit Determination Accuracy

  • Kim, Hae-Dong;Choi, Hae-Jin;Kim, Eun-kyou
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.588-590
    • /
    • 2003
  • For the normal operations, KOMPSAT-1 orbits are determined using GPS navigation solutions data such as position and velocity vectors. Currently, the accuracy of GPS navigation solution data is generally known as on the order of 10~30 m with the removal of S/A. In this paper, an estimate of the current orbit determination accuracy for the KOMPSAT-1 is given. For the evaluation of orbit determination accuracy, the orbit overlap comparison is used since no independent orbits of comparable accuracy are available for comparison. As a result, It is shown that the orbit accuracy is on the order of 5 m RMS with 4 hrs arc overlap for the 30 hr arc.

  • PDF

Performance Analysis of Real-time Orbit Determination and Prediction for Navigation Message of Regional Navigation Satellite System

  • Jaeuk Park;Bu-Gyeom Kim;Changdon Kee;Donguk Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.167-176
    • /
    • 2023
  • This study presents the performance analysis of real-time orbit determination and prediction for navigation message generation of Regional Navigation Satellite System (RNSS). Since the accuracy of ephemeris and clock correction in navigation message affects the positioning accuracy of the user, it is essential to construct a ground segment that can generate this information precisely when designing a new navigation satellite system. Based on a real-time architecture by an extended Kalman filter, we simulated orbit determination and prediction of RNSS satellites in order to assess the accuracy of orbit and clock prediction and signal-in-space ranging errors (SISRE). As a result of the simulation, the orbit and clock accuracy was at 0.5 m and 2 m levels for 24 hour determination and six hour prediction after the determination, respectively. From the prediction result, we verified that the SISRE of RNSS for six hour prediction was at a 1 m level.

GPS-Based Orbit Determination for KOMPSAT-5 Satellite

  • Hwang, Yoo-La;Lee, Byoung-Sun;Kim, Young-Rok;Roh, Kyoung-Min;Jung, Ok-Chul;Kim, Hae-Dong
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.487-496
    • /
    • 2011
  • Korea Multi-Purpose Satellite-5 (KOMPSAT-5) is the first satellite in Korea that provides 1 m resolution synthetic aperture radar (SAR) images. Precise orbit determination (POD) using a dual-frequency IGOR receiver data is performed to conduct high-resolution SAR images. We suggest orbit determination strategies based on a differential GPS technique. Double-differenced phase observations are sampled every 30 seconds. A dynamic model approach using an estimation of general empirical acceleration every 6 minutes through a batch least-squares estimator is applied. The orbit accuracy is validated using real data from GRACE and KOMPSAT-2 as well as simulated KOMPSAT-5 data. The POD results using GRACE satellite are adjusted through satellite laser ranging data and compared with publicly available reference orbit data. Operational orbit determination satisfies 5 m root sum square (RSS) in one sigma, and POD meets the orbit accuracy requirements of less than 20 cm and 0.003 cm/s RSS in position and velocity, respectively.

Accuracy Analysis of GEO-KOMPSAT-2 Onboard Orbit Generator (정지궤도 복합위성 탑재용 궤도정보 생성기 정밀도 해석)

  • Park, Bong-Kyu;Choi, Jae Dong;Ahn, Sang Il;Kim, Bang Yeop
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.19-25
    • /
    • 2012
  • GEO-KOMPSAT2 shall provide higher quality of image than the COMS and uses star tracker instead of earth sensor, which requires precise onboard orbit information. This requires precise on-ground orbit determination. For COMS, orbit determination is performed using the ranging data obtained from tracking system located in DAEJON. For accurate orbit determination of GEO-KOMPSAT2, KARI is building a secondary tracking station in CHUUK Islands. In this paper, the achievable accuracy of table based onboard orbit parameter generator which interpolates orbit data obtained from on-ground orbit determination using tracking data collected from two ground stations. Two types of approaches have been applied; covariance analysis and numerical analysis. By combining two analysis results, total orbit error has been estimated.

ORBIT DETERMINATION OF GPS AND KOREASAT 2 SATELLITE USING ANGLE-ONLY DATA AND REQUIREMENTS FOR OPTICAL TRACKING SYSTEM (GPS 위성과 무궁화 2호의 광학관측데이터를 이용한 궤도 결정 및 정밀 궤도 결정을 위한 광학관측시스템 제안)

  • Lee, Woo-Kyoung;Lim, Hyung-Chul;Park, Pil-Ho;Youn, Jae-Hyuk;Yim, Hong-Suh;Moon, Hong-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.3
    • /
    • pp.221-232
    • /
    • 2004
  • Gauss method for the initial orbit determination was tested using angle-only data obtained by orbit propagation using TLB and SGP4/SDP4 orbit propagation model.. As the analysis of this simulation, a feasible time span between observation time of satellite resulting the minimum error to the true orbit was found. Initial orbit determination is performed using observational data of GPS 26 and Koreasat 2 from 0.6m telescope of KAO(Korea Astronomy Observatory) and precise orbit determination is also performed using simulated data. The result of precise orbit determination shows that the accuracy of resulting orbit is related to the accuracy of the observations and the number of data.

Orbit determination for the KOMPSAT-1 Spacecraft during the period of the solar maximum

  • Kim, Hae-Dong;Kim, Eun-Kyou;Choi, Hae-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.71-76
    • /
    • 2005
  • The KOMPSAT-1 satellite, launched into a circular sun synchronous orbit on Dec. 21, 1999, entered its$6^{th}$year of successful operation this year. The purposes of the mission are to collect earth images (6.6 m resolution), multi-spectral images of the ocean, and to collect information on the particle environment of the low earth orbit. For normal operation, KOMPSAT-1 orbits are determined using GPS navigation solutions. However, at the start of the life of KOMPSAT-1, the 11-year solar activity cycle was at a maximum. Solar flux was maintained at this level until 2002, and thereafter reduced to a moderate level by 2004. Thus, the OD (Orbit Determination) accuracy has varied according to the solar activity. This paper presents the degree to which the OD accuracy could be degraded during a high solar activity period compared with that of a (relatively) low solar activity period. We investigated the effect of the use of solve-for parameters such as a drag coefficient ($C_D$), solar radiation coefficient ($C_R$), and the general accelerations ($G_A$) on OD accuracy with solar activity. For the evaluation of orbit determination accuracy, orbit overlap comparison is used since no independent orbits of comparable accuracy are available for comparison. The effect of the use of a box-wing model instead of a constant cross-sectional area is also investigated.

Performance Analysis of the KOMPSAT-1 Orbit Determination Using GPS Navigation Solutions (GPS 항행해를 이용한 아리랑 1호의 궤도결정 성능분석 연구)

  • Kim, Hae-Dong;Choi, Hae-Jin;Kim, Eun-Kyou
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.43-52
    • /
    • 2004
  • In this paper, the performance of the KOMPSAT-1 orbit determination (OD) accuracy at the ground station was analyzed by using the flight data. The Bayesian least squares estimation was used for the orbit determination and the assessment of the orbit accuracy was evaluated based on orbit overlap comparisons. We also compared the result from OD using GPS navigation solutions with NORAD TLE and the result from OD using range data. Furthermore, the effect of observation type and OBT drift on the accuracy was investigated. As a consequence, It is shown that the OD accuracy using only GPS position data is on the order of 5m RMS (Root Mean Square) with 4 hrs arc overlap for the 30hr arc and the GPS velocity data is not proper as a observation for the OD due to its inferior quality. The significant deterioration of the accuracy due to the critical clock bias was not founded by means of the comparison of OD result from other observations.

Two-Site Optical Observation and Initial Orbit Determination for Geostationary Earth Orbit Satellites

  • Choi, Jin;Choi, Young-Jun;Yim, Hong-Suh;Jo, Jung-Hyun;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.337-343
    • /
    • 2010
  • Optical observation system provides angle-only measurement for orbit determination of space object. Range measurement can be directly acquired using laser ranging or tone ranging system. Initial orbit determination (IOD) by using angle- only data set shows discrepancy according to the measurement time interval. To solve this problem, range measurement data should be added for IOD. In this study, two-site optical observation was used to derive the range information. We have observed nine geostationary earth orbit satellites by using two-site optical observation system. The determination result of the range shows the accuracy over 99.5% compared to the results from the satellite tool kit simulation. And we confirmed that the orbit determination by the Herrick-Gibbs method with the range information obtained from the two-site observation is more accurate than the orbit determination by Gauss method with the one-site observation. For more accurate two-site optical observation, a baseline should satisfy an optimal condition of length and more precise observation system needed.

Precision orbit determination with SLR observations considering range bias estimation

  • Kim, Young-Rok;Park, Sang-Young;Park, Eun-Seo;Park, Jong-Uk;Jo, Jung-Hyun;Park, Jang-Hyun
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.27.5-28
    • /
    • 2010
  • The unexpected observation condition or insufficient measurement modeling can lead to uncertain measurement errors. The uncertain measurement error of orbit determination problem typically consists of noise, bias and drift. It must be removed by using a proper estimation process for better orbit accuracy. The estimation of noise and drift is not easy because of their random or unpredictable variation. On the other hand, bias is a constant difference between the mean of the measured values and the true value, so it can be simply removed. In this study, precision orbit determination with SLR observations considering range bias estimation is presented. The Yonsei Laser-ranging Precision Orbit Determination System (YLPODS) and SLR NP (Normal Point) observations of CHAMP satellite are used for this work. The SLR residual test is performed to estimate the range bias of each arc. The result shows that we can get better orbit accuracy through range bias estimation.

  • PDF