• Title/Summary/Keyword: Oral cancer cells

Search Result 405, Processing Time 0.026 seconds

Analysis of SARS-CoV-2 Mutations after Nirmatrelvir Treatment in a Lung Cancer Xenograft Mouse Model

  • Bo Min Kang;Dongbum Kim;Jinsoo Kim;Kyeongbin Baek;Sangkyu Park;Ha-Eun Shin;Myeong-Heon Lee;Minyoung Kim;Suyeon Kim;Younghee Lee;Hyung-Joo Kwon
    • Biomolecules & Therapeutics
    • /
    • v.32 no.4
    • /
    • pp.481-491
    • /
    • 2024
  • Paxlovid is the first approved oral treatment for coronavirus disease 2019 and includes nirmatrelvir, a protease inhibitor targeting the main protease (Mpro) of SARS-CoV-2, as one of the key components. While some specific mutations emerged in Mpro were revealed to significantly reduce viral susceptibility to nirmatrelvir in vitro, there is no report regarding resistance to nirmatrelvir in patients and animal models for SARS-CoV-2 infection yet. We recently developed xenograft tumors derived from Calu-3 cells in immunodeficient mice and demonstrated extended replication of SARS-CoV-2 in the tumors. In this study, we investigated the effect of nirmatrelvir administration on SARS-CoV-2 replication. Treatment with nirmatrelvir after virus infection significantly reduced the replication of the parental SARS-CoV-2 and SARS-CoV-2 Omicron at 5 days post-infection (dpi). However, the virus titers were completely recovered at the time points of 15 and 30 dpi. The virus genomes in the tumors at 30 dpi were analyzed to investigate whether nirmatrelvir-resistant mutant viruses had emerged during the extended replication of SARS-CoV-2. Various mutations in several genes including ORF1ab, ORF3a, ORF7a, ORF7b, ORF8, and N occurred in the SARS-CoV-2 genome; however, no mutations were induced in the Mpro sequence by a single round of nirmatrelvir treatment, and none were observed even after two rounds of treatment. The parental SARS-CoV-2 and its sublineage isolates showed similar IC50 values of nirmatrelvir in Vero E6 cells. Therefore, it is probable that inducing viral resistance to nirmatrelvir in vivo is challenging differently from in vitro passage.

THE EFFICACY OF PROGRAMMED CRYO-PRESERVATION UNDER PRESSURE IN RAT PERIODONTAL LIGAMENT CELLS (압력 저속 냉동 방법의 쥐 치아 치주인대세포 보존 효율 평가)

  • Lee, Young-Eun;Kim, Eui-Seong;Kim, Jin;Han, Seung-Hoon;Lee, Seung-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.4
    • /
    • pp.356-363
    • /
    • 2009
  • The purpose of this study was to evaluate the viability of periodontal ligament cells in rat teeth using slow cryo-preservation method under pressure by means of MTT assay and WST-1 assay. Eighteen teeth of Sprague-Dawley white female rats of 4 week-old were used for each group. Both sides of the first and second maxillary molars were extracted as atraumatically as possible under Tiletamine anesthesia. The experimental groups were group 1 (Immediate control), group 2 (Cold preservation at $4^{\circ}C$for 1 week), group 3 (Slow freezing), group 4 (Slow freezing under pressure of 3 MPa). F-medium and 10% DMSO were used as preservation medium and cryo-protectant. For cryo-preservation groups, thawing was performed in $37^{\circ}C$water bath, then MTT assay and WST-1 assay were processed. One way ANOVA and Tukey method were performed at the 95% level of confidence. The values of optical density obtained by MTT assay and WST-1 were divided by the values of eosin staining for tissue volume standardization. In both MTT and WST-1 assay, group 4 showed significantly higher viability of periodontal ligament cells than group 2 and 3 (p < 0.05), but showed lower viability than immediate control group. By the results of this study, slow cryo-preservation method under pressure suggests the possibility for long term cryo-preservation of the teeth.

Beneficial Effect of Korea Red Ginseng on Halitosis; Attenuation of H2S Induced Inflammatory Mediators and cystathionine γ-lyase Expression (고려홍삼의 구강악취 억제기능; H2S 생성에 따른 염증매개 유전자 및 cystathionine γ-lyase의 약화기능)

  • Choi, Ki-Seok;Lee, So-Jung;Lee, Jeong-Sang;Hong, Kyung-Sook;Kim, Jeong-Gon;Kim, Yoon-Jae;Hahm, Ki-Baik
    • Journal of Ginseng Research
    • /
    • v.33 no.4
    • /
    • pp.367-377
    • /
    • 2009
  • Halitosis is a generally accepted marker of diseases in the oral cavity and of systemic and gastrointestinal disorders. Based on these authors' previous findings (that (1) there is a close association between H. pylori infection and halitosis; (2) Korea red ginseng may suppress the colonization of H. pylori, fight H. pylori-induced cytotoxicity, and impose significant anti-inflammatory actions in patients with chronic gastritis; and (3) H. pylori infection is linked with the generation of significant levels of volatile sulfur compounds (VSCs), and the levels of VSCs correlate significantly with H. pylori-associated mucosal damages), in the current study, the authors documented the molecular mechanisms of Korea red ginseng's efficacy in ameliorating halitosis. When the RAW 264.7 cells were treated with the $H_2S$ releasing compound NaHS, the mRNA expression of cystathionine ${\gamma}$-lyase (CSE), IL-6, COX-2, and iNOS were more significantly induced compared with the vehicle-treated group. The cytoskeletal components of ezrin's and moesin's mRNA expressions were elevated by NaHS treatment accompanied by the activation of MAPK, p38, and ERK. Korea red ginseng pretreatment reduced both the NaHS-induced CSE expression and the proinflammatory genes (e.g., IL-6, COX-2, and iNOS) in a concentration-dependent manner. The ERM expression and the phosphorylation of p38 were also significantly reduced by Korea-red-ginseng pretreatment. Overall, Korea red ginseng pretreatment imposed significant anti-inflammatory effects through the downregulation of the NaHS-triggered proinflammatory gene expression, CSE, and ERM mRNA expression. Korea red ginseng could thus be said to be a key remedy of halitosis and to be effective in relieving gastric inflammation.

In Vitro and In Vivo Anti-Oxidative and Anti-Inflammatory Activities of Acer tegmentosum Maxim Extracts (RAW 264.7 대식세포와 염증유도 동물모델에서 산겨릅나무 추출물의 항산화 및 항염증 효과)

  • Lee, Cho-Eun;Jeong, Hyeon-Hee;Cho, Jin-Ah;Ly, Sun Yung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Acer tegmentosum Maxim (ATM) is known as traditional medicine for treatment of hepatic disorders such as hepatitis, related-inflammatory disease, and hepatic cancer. In this study, we evaluated the antioxidant and anti-inflammatory effects of ATM extracted with $80^{\circ}C$ water or 95% ethanol. Antioxidant activities of ATM extracts were measured based on DPPH and ABTS radical scavenging activities, total polyphenolic compound contents, and ferric reducing antioxidant power. The anti-inflammatory effects of ATM extract were assayed on release of nitric oxide, tumor necrosis factor $(TNF)-{\alpha}$, and interferon $(IFN)-{\gamma}$ from lipopolysaccharide (LPS)-induced macrophages. In these experiments, 95% ethanol extract of ATM showed stronger antioxidant and anti-inflammatory effects than water extract. Therefore, we determined the effects of ATM ethanol extract on an animal model of sepsis. Seven days oral gavage of ATM ethanol extract followed by LPS stimulation reduced the protein levels of $TNF-{\alpha}$ and $IFN-{\gamma}$ in serum as well as mRNA levels of $TNF-{\alpha}$ and interleukin-6 in intestinal epithelial cells. In addition, ATM ethanol extract reduced DNA damage in mouse lymphocytes. These results indicate that ATM extract has strong antioxidant and anti-inflammatory in vitro and in vivo effects and may be developed as a potential food material for prevention of inflammatory diseases.

Probiotic Effects of Lactobacillus plantarum Strains Isolated from Kimchi (김치에서 분리한 Lactobacillus plantarum 균주들의 프로바이오틱 효과)

  • Lee, Xue-Mei;Lee, Hyun Ah;Kweon, Meera;Park, Eui-Seong;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1717-1724
    • /
    • 2016
  • Probiotic effects of Lactobacillus plantarum pF1 NITE-P1462 (Lp-pF1), L. plantarum KCCM 11352P (Lp-PNU), L. plantarum CBT LP3 KCTC 10782BP (Lp-CB), and L. plantarum KCTC 3099 (Lp-3099) isolated from kimchi and Lactococcus lactis KFCC 11510P (L-lactis) isolated from Doenjang were studied. Resistance to gastric and bile acid, adhesion to intestines in colon cells, thermal stability, and antioxidative and in vitro anticancer effects in HT-29 cancer cells were evaluated. L. plantarum strains showed improved tolerance of gastric and bile acids than L-lactis. Lp-pF1 had better adhesion ability in the intestine than Lp-PNU, Lp-3099, and L-lactis. Lp-pF1 also showed better heat resistance at $50^{\circ}C$, $70^{\circ}C$, and $80^{\circ}C$ than Lp-CB, Lp-3099, and L-lactis. In addition, Lp-pF1 exhibited greater antioxidant activity by scavenging DPPH radicals or hydroxyl radicals and anticancer effects in MTT assay than others. Taken together, these results suggest that L. plantarum isolated from kimchi showed higher probiotic activities with antioxidant and anticancer properties than Lac. lactis isolated from Doenjang. Lp-pF1 revealed the best probiotic activities among L. plantarum and could be used as a promising potential probiotics.