• Title/Summary/Keyword: Oral Scanner

Search Result 123, Processing Time 0.028 seconds

Comparison of accuracy of digital data obtained by intra-oral scanner and extra-oral scanner (구강 내 스캐너와 구강 외 스캐너를 사용하여 취득된 스캔 데이터 정확도 비교)

  • Lee, Jae-Jun;Jeong, Il-Do;Kim, Chong-Myung;Park, Jin-Young;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.37 no.4
    • /
    • pp.191-197
    • /
    • 2015
  • Purpose: The purpose of this study was to compare the accuracy of the scan data acquired by the extra-oral and intra-oral scanner. Methods: The maxillary right first molar was made of polymethyl methacrylate(PMMA) specimen. This PMMA specimen was scanned with a engineering scanner and intra-oral scanner. Meanwhile, extra-oral scanner scanned stone die duplicated from PMMA master die. Trueness and precision of scan datas was measured by 3-dimensinal inspection. Independent t-test was conduct to analysis the significant difference(a=0.05). Results: In the trueness analysis, mean of discrepancies were 13.82um for intra oral scanner and 16.84 um for extra-oral scanner. In the precision analysis, mean of discrepancies were 11.72 for inta-oral scanner and 9.2 for extra-oral scanner. Both trueness and precision showed a statistically significant difference (Table 1, p<0.05). Conclusion: Intra-oral scanner can show higher trueness than extra-oral scanner, it has lower precision.

Comparison of the accuracy of domestic dental intra-oral scanner(e-scanner) and model scanner (국산 치과용 구강스캐너(e-scanner)와 모델스캐너의 정확도 비교)

  • Kim, Busob;Kim, Jungho
    • Journal of Technologic Dentistry
    • /
    • v.41 no.2
    • /
    • pp.53-61
    • /
    • 2019
  • Purpose: The purpose of this study is to evaluate the discrepancy of scan process in dental intra oral scanner by comparing model scanner and anticipate possibility to introduce intra oral scan technique. Methods: 3D superimposition test was conducted to compare the scan discrepancy. The scanners used in this study are the e-oral scanner, the D750 model scanner, and the high precision CMM(3D Coordinate Measuring Machine). The standard of accuracy verification is ISO 5725-1; trueness and precision. Master model was manufactured by dental stone and scanned 5 times by intra oral, model scanner. Reference data was scanned 5 times by high accuracy CMM to evaluate the trueness. Results: Trueness of D750 scanner were $7.4{\mu}m$ $5.1{\mu}m$ $6.8{\mu}m$ at an abutment, an occluasal, a specific area. and trueness of e-scanner were $20.2{\mu}m$ $27.4{\mu}m$ $37.8{\mu}m$ at an abutment, an occluasal, a specific area. Precision of D750 scanner was $7.04{\mu}m$, e-scanner was $15.95{\mu}m$. Conclusion: When conducting in vitro test, The mean difference of trueness between e-scanner and D750 were $12.8{\mu}m$ at an abutment area, $22.3{\mu}m$ at an occlusal area, $31.0{\mu}m$ at a specific area and $8.91{\mu}m$ in precision. The scan discrepancies are within the range of clinical acceptance.

Comparison of the Internal Fitness of Prostheses Fabricated with Non-Contact Extra-Oral Scanner and Intra-Oral Video Scanner (비접촉식 구강외 스캐너와 비디오방식 구강내 스캐너를 이용하여 제작된 보철물의 내면정확도 비교)

  • Park, Jin-Young;Kim, Ji-Hwan;Jeong, Il-Do;Lee, Gwang-Young;Kim, Won-Soo
    • Journal of Technologic Dentistry
    • /
    • v.41 no.4
    • /
    • pp.263-269
    • /
    • 2019
  • Purpose: The purpose of this study was to evaluate the internal fitness of prostheses fabricated with non-contact extra-oral scanner and those fabricated with intra-oral video scanner, with a comparative accuracy analyses of their precision and trueness. Methods: A polymethyl methacrylate (PMMA) model was fabricated by replicating a master model. The prostheses in the first group were fabricated based on the PMMA model with an intra-oral video scanner (IVS group). Following the fabrication of work models with Type IV Stone that were based on the PMMA model, the prostheses in the second group were fabricated with a non-contact extra-oral scanner (ENB group). The precision and trueness of the prostheses were calculated from comparisons of the three-dimensional images of the internal surfaces of the prostheses and those of the master model. Kruskal-Wallis tests were used to determine the statistical significance, with the level of type 1 error set at 0.05. Results: Trueness (P < 0.009) and precision (P < 0.001) did not differ significantly between the ENB and IVS groups. The IVS group exhibited lower trueness values and larger precision values than the ENB group. Conclusion: Although no significant differences were found in the internal fitness of the prostheses that were fabricated by the two different scanners, the intraoral video scanner-fabricated prostheses had better trueness, whereas the non-contact extra-oral scanner-fabricated prostheses had better precision.

Analysis of dental hygienists' perception of knowledge and attitude toward digital oral scanner (디지털 구강스캐너에 대한 치과위생사의 지식과 태도에 관한 인식도 분석)

  • Lee, Cheon-Hee;Ahn, Sun-Ha
    • Journal of Korean society of Dental Hygiene
    • /
    • v.19 no.1
    • /
    • pp.33-44
    • /
    • 2019
  • Objectives: To investigate how dental hygienists who have never used a digital oral scanner perceive the impression acquisition and evidence needed for prosthesis planning by using a digital oral scanner. Methods: From July 1, 2017 to December 31, 2017, subjects from Daegu, Gyeongsangbuk-do, Korea, were selected. The purpose of the study was described to dental hygienists who had never used a digital intraoral scanner. Questionnaires were distributed to the students selected. Of the 137 questionnaires distributed, 93 were used in the analysis after excluding 44 completed questionnaires that had errors or missing answers. Results: Of the respondents, 33.7% (36/93) were aged ${\geq}30$ years, 68.8% graduated from a 3-year vocational college course, 33.5% were aged ${\geq}33$ years, and 61.3%. At present, our center has the largest number of clinics (92.5%). The difficulty of impression taking using the digital oral scanner significantly differed (p<0.05) according to age and current occupation (p<0.05). Impression taking using a digital oral scanner significantly affected the present workflow of dental hygienists and their interest in sharing information about future use of digital oral scanner (p<0.01). Conclusions: If more routes are available to access digital intraoral scanners and more systems are developed for clinical use, the digital intraoral scanner could become digitized in the dental system; thereby, the existing impressions could be replaced with digitized impressions. With digital intraoral scanners, the expansion of the business of dental hygiene can be expected.

Comparison of 2-dimensional marginal and internal fitness for the monolithic zirconia prosthesis using intraoral scanner and extraoral scanner: in vitro (Extraoral scanner와 intraoral scanner를 이용하여 제작된 zirconia crown의 2차원 변연 및 내면 적합도 비교: in vitro)

  • Lee, Tae-Hee;Lee, Ha-Bin;Kim, Ji-hwan
    • Journal of Technologic Dentistry
    • /
    • v.41 no.3
    • /
    • pp.187-193
    • /
    • 2019
  • Purpose: The purpose of this study was to compare two-dimensional fitness of the monolithic zirconia prosthesis by using different type of scanner. Methods: No. 26 abutment tooth of FDI system was selected for the study. Using the extraoral scanner and intraoral scanner, the abutment tooth was scanned 10 times and the scanned files were saved as STL files. CAD/CAM system was used to produce the monolithic zirconia prosthesis. marginal and internal gap of the monolithic zirconia prosthesis were measured by digital microscope(x160) and applied silicone replica technique was applied. t-test, a statistical software, was used to perform data analysis. Results: Marginal gap $mean{\pm}SD$ of the monolithic zirconia prosthesis was $33{\pm}7.5{\mu}m$ with extra oral scanner and $34.7{\pm}11.1{\mu}m$ with intraoral scanner. axial gap mean was $40.5{\pm}3.5{\mu}m$ with extra oral scanner and $44.6{\pm}11.6{\mu}m$ with intraoral scanner. occlusal gap mean was $110.1{\pm}25.4{\mu}m$ with extra oral scanner and $64{\pm}9.7{\mu}m$ with intraoral scanner. Conclusion: In this study, fabricating zirconia prosthesis with different type of scanner was clinically applicable.

Development of Image-space Telecentric Lens for Intra-Oral 3D Scanner

  • Kim, Tae Young;Shin, Min-Ho;Chang, Ryungkee;Kim, Young-Joo
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.303-310
    • /
    • 2015
  • An image-space telecentric lens for an intra-oral 3D scanner was designed and fabricated for dental application. Since a telecentric function can provide the same results regardless of image plane position, it helps to realize a more accurate image for an intra-oral scanner. The performance of the designed lens meets the required properties for HD resolution. In particular, lateral color is corrected within 1 pixel. This system achieves depth of focus of more than 3 mm. For user convenience, the developed system consists of a prism part and an imaging part. Both parts are optimized to reduce the front size and weight of the system. In order to make the parallax sights, parallax angle was determined to be 8 degrees between two optical systems.

Effects of inter-implant distance on the accuracy of intraoral scanner: An in vitro study

  • Thanasrisuebwong, Prakan;Kulchotirat, Tharathip;Anunmana, Chuchai
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.2
    • /
    • pp.107-116
    • /
    • 2021
  • PURPOSE. Several studies focused on the accuracy of intra-oral scanners in implant dentistry, but the data of inter-implant distances were not widely mentioned. Therefore, this study aimed to evaluate the effect of distance between two implants on the surface distortion of scanned models generated by intra-oral scanners. MATERIALS AND METHODS. Three models with the distances between two fixed scan bodies of 7, 14, and 21 mm were fabricated and scanned with a highly precise D900L dental laboratory scanner as reference models. Fifteen scans were performed with TRIOS3 and CEREC Omnicam intra-oral scanners. Trueness, precision, and angle deviation of the test models were analyzed (α=.05). RESULTS. There was a significant difference among inter-implant distances in both intraoral scanners (P<.001). The error of trueness and precision increased with the increasing inter-implant length, while the angle deviation did not show the same trend. A significant difference in the angle deviation was found among the inter-implant distance. The greatest angle deviation was reported in the 14-mm group of both scanners (P<.05). In contrast, the lowest angle deviation in the 21-mm group of the TR scanner and the 7-mm of the CR scanner was reported (P<.001). CONCLUSION. The inter-implant distance affected the accuracy of intra-oral scanner. The error of trueness and precision increased along with the increasing distance between two implants. However, the distortions were not clinically significant. Regarding angle deviation, the clinically significant angle deviation may be possible when using intra-oral scanners in the partially edentulous arch.

Suitable scanning procedures for various prosthodontic treatments and the utilization of intraoral scanner (임상가를 위한 특집 3 - 여러 보철 치료 술식에 따른 바른 스캐닝 과정과 구강스캐너의 활용)

  • Park, Ji-Manm;Park, Eun-Jin;Heo, Seong-Joo
    • The Journal of the Korean dental association
    • /
    • v.52 no.6
    • /
    • pp.354-362
    • /
    • 2014
  • With the development of digital dentistry, various intra-oral scanners which acquire intraoral image without conventional impression taking and stone pouring steps have been introduced. Fixed dental prostheses such as inlay, onlay, crown, and bridge fabricated by CAD/CAM technique combined with digital impressions is getting popular due to the recent rapid progress of digital impression taking system. In comparison with traditional prosthetic procedure, the advantages of intraoral image acquiring and CAD/CAM technique are as follows; the omission of conventional impression materials, reduced workflow step, and increased efficiency by online communication with clinic and laboratory. This review article covers some opinions about the suitable scanning procedures for the various prosthodontic treatments and the utilization of digital intraoral scanner and CAD/CAM system.

Real-time Tooth Region Detection in Intraoral Scanner Images with Deep Learning (딥러닝을 이용한 구강 스캐너 이미지 내 치아 영역 실시간 검출)

  • Na-Yun, Park;Ji-Hoon Kim;Tae-Min Kim;Kyeong-Jin Song;Yu-Jin Byun;Min-Ju Kang․;Kyungkoo Jun;Jae-Gon Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.1-6
    • /
    • 2023
  • In the realm of dental prosthesis fabrication, obtaining accurate impressions has historically been a challenging and inefficient process, often hindered by hygiene concerns and patient discomfort. Addressing these limitations, Company D recently introduced a cutting-edge solution by harnessing the potential of intraoral scan images to create 3D dental models. However, the complexity of these scan images, encompassing not only teeth and gums but also the palate, tongue, and other structures, posed a new set of challenges. In response, we propose a sophisticated real-time image segmentation algorithm that selectively extracts pertinent data, specifically focusing on teeth and gums, from oral scan images obtained through Company D's oral scanner for 3D model generation. A key challenge we tackled was the detection of the intricate molar regions, common in dental imaging, which we effectively addressed through intelligent data augmentation for enhanced training. By placing significant emphasis on both accuracy and speed, critical factors for real-time intraoral scanning, our proposed algorithm demonstrated exceptional performance, boasting an impressive accuracy rate of 0.91 and an unrivaled FPS of 92.4. Compared to existing algorithms, our solution exhibited superior outcomes when integrated into Company D's oral scanner. This algorithm is scheduled for deployment and commercialization within Company D's intraoral scanner.

The Developement of Small 360° Oral Scanner Lens Module (소형 360° 구강 스캐너 렌즈 모듈 개발)

  • Kwak, Dong-Hoon;Lee, Sun-Gu;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.858-861
    • /
    • 2018
  • In this paper, we propose the development of a small $360^{\circ}$ oral scanner lens module. The proposed small $360^{\circ}$ oral scanner lens module consists of a small $360^{\circ}$ high resolution(4MegaPixel) lens optical system, a 15mm image sensor unit, and a small $360^{\circ}$ mouth scanner lens external shape. A small $360^{\circ}$ high resolution lens optical system produces a total of nine lenses, the outer diameter of the lens not less than 15mm for use by children through the ages of adulthood. Light drawn by a small $360^{\circ}$ high resolution lens optical system is $90^{\circ}$ flexion so that image images are delivered to image sensors. The 15mm image sensor unit sends the converted value to the ISP(Image Signal Processor) of the embedded board after an image array through the column and the row address of the image sensor. The small $360^{\circ}$ mouth scanner lens outer shape was designed to fix the race to the developed lens. Results from authorized testing agencies to assess the performance of proposed small $360^{\circ}$ oral scanner lens modules, The optical resolving power of $360^{\circ}$ lens was more than 30% at 150 cycles/mm, $360^{\circ}$ lens angle was $360^{\circ}$ in vertical direction, $42^{\circ}{\sim}85^{\circ}$ in vertical direction, and lens distortion rate was 5% or less. It produced the same result as the world's highest level.