• Title/Summary/Keyword: Optogenetics

Search Result 12, Processing Time 0.034 seconds

Optogenetic neuromodulation with gamma oscillation as a new strategy for Alzheimer disease: a narrative review

  • Ko, Haneol;Yoon, Sang-Pil
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.4
    • /
    • pp.269-277
    • /
    • 2022
  • The amyloid hypothesis has been considered a major explanation of the pathogenesis of Alzheimer disease. However, failure of phase III clinical trials with anti-amyloid-beta monoclonal antibodies reveals the need for other therapeutic approaches to treat Alzheimer disease. Compared to its relatively short history, optogenetics has developed considerably. The expression of microbial opsins in cells using genetic engineering allows specific control of cell signals or molecules. The application of optogenetics to Alzheimer disease research or clinical approaches is increasing. When applied with gamma entrainment, optogenetic neuromodulation can improve Alzheimer disease symptoms. Although safety problems exist with optogenetics such as the use of viral vectors, this technique has great potential for use in Alzheimer disease. In this paper, we review the historical applications of optogenetic neuromodulation with gamma entrainment to investigate the mechanisms involved in Alzheimer disease and potential therapeutic strategies.

Optogenetics: a New Frontier for Cell Physiology Study (광유전학: 세포 생리 연구를 위한 새로운 frontier)

  • Byun, Jonghoe
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.953-959
    • /
    • 2015
  • Optogenetics is the combination of optical and molecular strategies to control designated molecular and cellular activities in living tissues and cells using genetically encoded light-sensitive proteins. It involves the use of light to rapidly gate the membrane channels that allows for ion movement. Optogenetics began with the placing of light-sensitive proteins from green algae inside specific types of brain cells. The cells can then be turned on or off with pulses of blue and yellow light. Using the naturally occurring algal protein Channelrhodopsin-2 (ChR2), a rapidly gated light-sensitive cation channel, the number and frequency of action potentials can be controlled. The ChR2 provides a way to manipulate a single type of neuron while affecting no others, an unprecedented specificity. This technology allows the use of light to alter neural processing at the level of single spikes and synaptic events, yielding a widely applicable tool for neuroscientists and biomedical engineers. An improbable combination of green algae, lasers, gene therapy and fiber optics made it possible to map neural circuits deep inside the brain with a precision that has never been possible before. This will help identify the causes of disorders like depression, anxiety, schizophrenia, addiction, sleep disorder, and autism. Optogenetics could improve upon existing implanted devices that are used to treat Parkinson’s disease, obsessive-compulsive disorder and other ailments with pulses of electricity. An optogenetics device could hit more specific subsets of brain cells than those devices can. Applications of optogenetic tools in nonneuronal cells are on the rise.

Power-Efficient Wireless Neural Stimulating System Design for Implantable Medical Devices

  • Lee, Hyung-Min;Ghovanloo, Maysam
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.133-140
    • /
    • 2015
  • Neural stimulating implantable medical devices (IMDs) have been widely used to treat neurological diseases or interface with sensory feedback for amputees or patients suffering from severe paralysis. More recent IMDs, such as retinal implants or brain-computer interfaces, demand higher performance to enable sophisticated therapies, while consuming power at higher orders of magnitude to handle more functions on a larger scale at higher rates, which limits the ability to supply the IMDs with primary batteries. Inductive power transmission across the skin is a viable solution to power up an IMD, while it demands high power efficiencies at every power delivery stage for safe and effective stimulation without increasing the surrounding tissue's temperature. This paper reviews various wireless neural stimulating systems and their power management techniques to maximize IMD power efficiency. We also explore both wireless electrical and optical stimulation mechanisms and their power requirements in implantable neural interface applications.

Color Sensing and Signal Transmission Diversity of Cyanobacterial Phytochromes and Cyanobacteriochromes

  • Villafani, Yvette;Yang, Hee Wook;Park, Youn-Il
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.509-516
    • /
    • 2020
  • To perceive fluctuations in light quality, quantity, and timing, higher plants have evolved diverse photoreceptors including UVR8 (a UV-B photoreceptor), cryptochromes, phototropins, and phytochromes (Phys). In contrast to plants, prokaryotic oxygen-evolving photosynthetic organisms, cyanobacteria, rely mostly on bilin-based photoreceptors, namely, cyanobacterial phytochromes (Cphs) and cyanobacteriochromes (CBCRs), which exhibit structural and functional differences compared with plant Phys. CBCRs comprise varying numbers of light sensing domains with diverse color-tuning mechanisms and signal transmission pathways, allowing cyanobacteria to respond to UV-A, visible, and far-red lights. Recent genomic surveys of filamentous cyanobacteria revealed novel CBCRs with broader chromophore-binding specificity and photocycle protochromicity. Furthermore, a novel Cph lineage has been identified that absorbs blue-violet/yellow-orange light. In this minireview, we briefly discuss the diversity in color sensing and signal transmission mechanisms of Cphs and CBCRs, along with their potential utility in the field of optogenetics.

Suggestion on ubiquitous healthcare device on the basis of ECoG and Optogenetics (광유전학과 피질전도 측정 장치 기반 유비쿼터스 헬스케어 장치 제안)

  • Jeong, Jae-won
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.153-155
    • /
    • 2017
  • 최근 건강관리 및 질병관리 등에 대한 관심이 증가하면서 유비쿼터스 헬스케어 서비스와 관련 기기에 대한 개발이 활발히 진행 중이다. 또한, 관련 기기가 단순히 건강진단 및 질병진단과 더불어서 치료까지 하나의 기기에서 이루어지는 테라그노시스 방향으로 개발되고 있다. 또한 치료를 위해 광유전학 기술을 이용하여 광반응성 단백질인 ChR2로 뇌세포의 자극을 조절할 수 있다. 뇌세포의 자극을 조절함으로써 뇌 질환의 발현 시 유용하게 대처할 수 있다. 본 논문에서 뇌의 전기적 신호를 획득하는 기기와 연동되는 IoT 시스템을 통해서 유비쿼터스 헬스케어에 대한 방법론에 대해서 서술한다. 특히, 뇌의 전기적 신호를 획득하는 장치를 통한 뇌, 신경 질환인 뇌전증에 대한 진단과 치료의 유무를 판단하는 유비쿼터스 헬스케어 시스템에 대해서 서술한다. 이처럼 웨어러블 뇌파 신호 측정 장치와 연동되는 IoT 시스템을 통해 뇌파 신호를 지속적으로 모니터함으로써 사용자의 뇌전증의 발현 시 진단 및 치료, 긴급연락 서비스를 통해 사용자의 돌발 사태에 대해서 대처할 수 있는 방법론을 제시한다.

  • PDF

Synergistic Ensemble of Optogenetic Actuators and Dynamic Indicators in Cell Biology

  • Kim, Jihoon;Heo, Won Do
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.809-817
    • /
    • 2018
  • Discovery of the naturally evolved fluorescent proteins and their genetically engineered biosensors have enormously contributed to current bio-imaging techniques. These reporters to trace dynamic changes of intracellular protein activities have continuously transformed according to the various demands in biological studies. Along with that, light-inducible optogenetic technologies have offered scientists to perturb, control and analyze the function of intracellular machineries in spatiotemporal manner. In this review, we present an overview of the molecular strategies that have been exploited for producing genetically encoded protein reporters and various optogenetic modules. Finally, in particular, we discuss the current efforts for combined use of these reporters and optogenetic modules as a powerful tactic for the control and imaging of signaling events in cells and tissues.

Inhibition of anterior cingulate cortex excitatory neuronal activity induces conditioned place preference in a mouse model of chronic inflammatory pain

  • Kang, Sukjae Joshua;Kim, Siyong;Lee, Jaehyun;Kwak, Chuljung;Lee, Kyungmin;Zhuo, Min;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.487-493
    • /
    • 2017
  • The anterior cingulate cortex (ACC) is known for its role in perception of nociceptive signals and the associated emotional responses. Recent optogenetic studies, involving modulation of neuronal activity in the ACC, show that the ACC can modulate mechanical hyperalgesia. In the present study, we used optogenetic techniques to selectively modulate excitatory pyramidal neurons and inhibitory interneurons in the ACC in a model of chronic inflammatory pain to assess their motivational effect in the conditioned place preference (CPP) test. Selective inhibition of pyramidal neurons induced preference during the CPP test, while activation of parvalbumin (PV)-specific neurons did not. Moreover, chemogenetic inhibition of the excitatory pyramidal neurons alleviated mechanical hyperalgesia, consistent with our previous result. Our results provide evidence for the analgesic effect of inhibition of ACC excitatory pyramidal neurons and a prospective treatment for chronic pain.