• Title/Summary/Keyword: Optoelectrical materials

Search Result 25, Processing Time 0.019 seconds

Photoluminescence Characterization of Halide Perovskite Films according to Measuring Conditions (페로브스카이트 할로겐화물 박막의 발광 측정 조건에 따른 특성 분석)

  • Cho, Hyeonah;Lee, Seungmin;Noh, Jun Hong
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.419-424
    • /
    • 2022
  • Halide perovskite solar cells (PSCs) have improved rapidly over the past few years, and research on the optoelectrical properties of halide perovskite thin films has grown as well. Among the characterization techniques, photoluminescence (PL), a method of collecting emitted photons to evaluate the properties of materials, is widely applied to evaluate improvements in the performance of PSCs. However, since only photons emitted from the film in the escape cone are included, the photons collected in PL are a small fraction of the total photons emitted from the film. Unlike PSCs power conversion efficiency, PL measuring methods have not been standardized, and have been evaluated in a variety of ways. Thus, an in-depth study is needed of the methods used to evaluate materials using PL spectra. In this study, we examined the PL spectra of the perovskite light harvesting layer with different measurement protocols and analyzed the features. As the incident angle changed, different spectra were observed, indicating that the PL emission spectrum can depend on the measuring method, not the material. We found the intensity and energy of the PL spectra changes were due to the path of the emitted photons. Also, we found that the PL of halide perovskite thin films generally contains limited information. To solve this problem, the emitted photons should be collected using an integrating sphere. The results of this study suggest that the emission spectrum of halide perovskite films should be carefully interpreted in accordance with PL measuring method, since PL data is mostly affected by the method.

Characteristic Comparison of MAZO and MIZO Thin Films with Mg and ZnO Variation (Mg와 ZnO 함량변화에 따른 MAZO, MIZO 박막의 특성비교)

  • Jang, Jun Sung;Kim, In Young;Jeong, Chae Hwan;Moon, Jong Ha;Kim, Jin Hyeok
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.101-105
    • /
    • 2015
  • ZnO is gathering great interest for large square optoelectrical devices of flat panel display (FHD) and solar cell as a transparent conductive oxide (TCO). Herewith, Mg and IIIA (Al, In) co-doped ZnO films were prepared on SLG substrate using RF magnetron sputtering system. The effect of variation of atomic weight % of Mg and ZnO have been investigated. The atomic weight % Al and In are of 3% and kept constant throughout. The numbers of samples were prepared according to their different contents, which are $M_{3%}AZO_{94%}$, $M_{4%}AZO_{93%}-(MAZO)$ and $M_{3%}IZO_{94%}$, $M_{4%}IZO_{93%}-(MIZO)$ respectively. A RF power of 225 W and working pressure of 6 m Torr was used for the deposition at $300^{\circ}C$. All of the two thin film show good uniformity in field emission scanning electron microscopy image. $M_{3%}AZO_{94%}$ thin film shows overall better performance among the all. The film shows the best lowest resistivity, carrier concentration, mobility and Sheet resistance and is found to be are of $8.16{\times}10^{-4}{\Omega}cm$, $4.372{\times}10^{20}/cm^3$, $17.5cm^2/vs$ and $8.9{\Omega}/sq$ respectively. Also $M_{3%}AZO_{94%}$ thin film shows the relatively high optical band gap energy of 3.7 eV with high transmittance more than 80% in visible region required for the better solar cell performance.

Growth and Optoelectrical Properties for $AgGaSe_2$ Single Crystal Thin Films ($AgGaSe_2$ 단결정 박막 성장과 광전기적 특성)

  • Hong, Kwang-Joon;You, Sang-Ha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.171-174
    • /
    • 2004
  • The stochiometric $AgGaSe_2$ polycrystalline mixture of evaporating materials for the $AgGaSe_2$ single crystal thin film was prepared from horizontal furnace. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal and semi-insulating GaAs(100) wafer were used as source material and substrate for the Hot Wall Epitaxy (HWE) system, respectively. The source and substrate temperature were fixed at $630^{\circ}C$ and $420^{\circ}C$, respectively. The thickness of grown single crystal thin films is $2.1{\mu}m$. The single crystal thin films were investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of $AgGaSe_2$ single crystal thin films measured from Hall effect by van der Pauw method are $4.89{\times}10^{17}\;cm^{-3},\;129cm^2/V{\cdot}s$ at 293K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the $AgGaSe_2$ single crystal thin film, we have found that the values of spin orbit splitting ${\Delta}S_o$ and the crystal field splitting ${\Delta}C_r$ were 0.1762 eV and 0.2494 eV at 10 K, respectively. From the photoluminescence measurement of $AgGaSe_2$ single crystal thin film, we observed free excition $(E_X)$ observable only in high quality crystal and neutral bound exciton $(D^o,X)$ having very strong peak intensity And, the full width at half maximum and binding energy of neutral donor bound excition were 8 meV and 14.1 meV, respectively. By Haynes rule, an activation energy of impurity was 141 meV.

  • PDF

Growth and Optoelectrical Properties for $CuInS_2$ Single Crystal Thin Film ($CuInS_2$ 단결정 박막 성장과 광전기적 특성)

  • Hong, Kwang-Joon;Lee, Sang-Youl
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.230-233
    • /
    • 2004
  • The stochiometric mix of evaporating materials for the $CuInS_2$ single crystal thin films was prepared from horizontal furnance. Using extrapolation method of X-ray diffraction patterns for the $CuInS_2$ polycrystal, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.524\;{\AA}$ and $11.142\;{\AA}$, respectively. To obtain the single crystal thin films, $CuInS_2$ mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperature were 640 t and 430 t, respectively and the thickness of the single crystal thin films was $2{\mu}m$. Hall effect on this sample was measured by the method of van dot Pauw and studied on carrier density and temperature dependence of mobility. The carrier density and mobility deduced from Hall data are $9.64{\times}10^{22}/m^3,\;2.95{\times}10^{-2}\;m^2/V{\cdot}s$ at 293 K, respectively The optical energy gaps were found to be 1.53 eV at room temperature. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the thin film, we have found that the values of spin orbit coupling splitting ${\Delta}So$ and the crystal field splitting ${\Delta}Cr$ were 0.0211 eV and 0.0045 eV at 10 K, respectively. From PL peaks measured at 10K, 807.7nm (1.5350ev) mean Ex peak of the free exciton emission, also 810.3nm (1.5301eV) expresses $I_2$ peak of donor-bound exciton emission and 815.6nm (1.5201eV) emerges $I_1$ peak of acceptor-bound exciton emission. In addition, the peak observed at 862.0nm (1.4383eV) was analyzed to be PL peak due to donor-acceptor pair(DAP).

  • PDF

Growth of Amorphous SiOx Nanowires by Thermal Chemical Vapor Deposition Method (열화학 기상 증착법에 의한 비정질 SiOx 나노와이어의 성장)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.123-128
    • /
    • 2017
  • Nanostructured materials have received attention due to their unique electronic, optical, optoelectrical, and magnetic properties as a results of their large surface-to-volume ratio and quantum confinement effects. Thermal chemical vapor deposition process has attracted much attention due to the synthesis capability of various structured nanomaterials during the growth of nanostructures. In this study, silicon oxide nanowires were grown on Si\$SiO_2$(300 nm)\Pt(5~40 nm) substrates by two-zone thermal chemical vapor deposition with the source material $TiO_2$ powder via vapor-liquid-solid process. The morphology and crystallographic properties of the grown silicon oxide nanowires were characterized by field-emission scanning electron microscope and transmission electron microscope. As results of analysis, the morphology, diameter and length, of the grown silicon oxide nanowires are depend on the thickness of the catalyst films. The grown silicon oxide nanowires exhibit amorphous phase.