• Title/Summary/Keyword: Opto-thermal effect

Search Result 8, Processing Time 0.021 seconds

A Droplet-Manipulation Method using Opto-thermal Flows on Amorphous Silicon Thin Film (비결정질 실리콘 박막 상에서의 광열 유동을 이용한 액적 조작)

  • Lee, Horim;Yoon, Jin Sung;Kim, Dong Sung;Lim, Geunbae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.91-96
    • /
    • 2014
  • We present a droplet-manipulation method using opto-thermal flows in oils. The flows are originated from Marangoni and buoyancy effects due to temperature gradient, generated by the adsorption of light on an amorphous silicon thin film. Using this method, we can transport, merge and mix droplets in an extremely simple system. Since the temperature rise during the operation is small, this method can be used for biological applications without the damage on cell viability.

Effect of Rapid Thermal Annealing on the Transparent Conduction and Heater Property of ZnO/Cu/ZnO Thin Films (RTA 후속 열처리에 따른 ZnO/Cu/ZnO 박막의 투명전극 및 발열체 특성 연구)

  • Yeon-Hak Lee;Daeil Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.3
    • /
    • pp.115-120
    • /
    • 2023
  • ZnO/Cu/ZnO (ZCZ) thin film deposited on the glass substrate with DC and RF magnetron sputtering was rapid thermal annealed (RTA) and then effect of thermal temperature on the opto-electical and transparent heater properties of the films were considered. The visible transmittance and electrical resistivity are depends on the annealing temperature. The electrical resistivity decreased from 1.68 × 10-3 Ωcm to 1.18 × 10-3 Ωcm and the films annealed at 400℃ show a higher transmittance of 78.5%. In a heat radiation test, when a bias voltage of 20 V is applied to the ZCZ film annealed at 400℃, its steady state temperature is about 70.7℃. In a repetition test, the steady state temperature is reached within 15s for all of the bias voltages.

A Study of Mechanical Property Enhancement of Polymer Nanostructure using IPL Treatment (IPL 처리를 통한 고분자 나노구조의 기계적 특성 향상 연구)

  • Kim, D.;Kim, D.I.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.113-117
    • /
    • 2020
  • In this paper, We investigated the effect of heat treatment process using photo-thermal effect in order to improve mechanical properties of nanostructure on polymer films made by nanoimprint process with hybrid resin. Nanostructures which have a low refractive characteristic were fabricated by UV nanoimprint and after that heat treatment was performed using IPL (intense pulsed light) under process condition of 550 V voltage, pulse width 5 ms, frequency 0.5 Hz. The transmittance and mechanical property of fabricated nanostructure films were evaluated to observe changes in the pattern transfer rate and mechanical properties of nanostructures. The transmittance of the nanostructure was measured at 97.6% at 550 nm wavelength. Nanoindentation was performed to identify improved anti-scatch properties. Result was compared by the heat source. In case of post treatment with IPL, hardness was 0.51 GPa and in the case of hotplate was 0.27 GPa, resulting the increase of hardness of 1.8 times. Elastic modulus of IPL treated sample was 5.9GPa and Hotplate treated one was 4GPa, showing the 1.4 time increase.

SYSTEM TRADE-OFF STUDY AND OPTO-THERMO-MECHANICAL ANALYSIS OF A SUNSHIELD ON THE MSC OF THE KOMPSAT-2

  • Kim, Young-Soo;Lee, Eung-Shik;Woo, Sun-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.393-402
    • /
    • 2003
  • The Multi-Spectral Camera (MSC) is the payload of KOMPSAT-2 which is designed for earth imaging in optical and near-infrared region on a sun-synchronous orbit. The telescope in the MSC is a Ritchey-Chretien type with large aperture. The telescope structure should be well stabilized and the optical alignment should be kept steady so that best images can be achieved. However, the MSC is exposed to adverse thermal environment on the orbit which can give impacts on optical performance. Solar incidence can bring non-uniform temperature rise on the telescope tube which entails unfavorable thermal distortion. Three ways of preventing the solar radiation were proposed, which were installing external mechanical shield, internal shield, and maneuvering the spacecraft. After trade-off study, internal sun shield was selected as a practical and optimal solution to minimize the effect of the solar radiation. In addition, detailed designs of the structure and sunshield were produced and analyses have been performed. The results were assessed to verify their impacts to the image quality. It was confirmed that the internal sunshield complies with the requirements and would improve image quality.

Advanced Optical and Electrical Properties of TIO Thin Films by Thermal Surface Treatment of Electron Beam Irradiation (전자빔 열 표면처리에 따른 TIO 박막의 투명전극 특성 개선 효과)

  • Yeon-Hak Lee;Min-Sung Park;Daeil Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.4
    • /
    • pp.193-197
    • /
    • 2023
  • Transparent and conducting titanium (Ti) doped indium oxide (TIO) thin films were deposited on the poly-imide (PI) substrate with radio frequency magnetron sputtering and then electron irradiation was conducted on the TIO film's surface to investigate the effect electron irradiation on the crystallization and opto-electrical properties of the films. All x-ray diffraction (XRD) pattern showed two diffraction peaks of the In2O2 (431) and (444) planes with regardless of the electron beam irradiation energy. In the AFM analysis, the surface roughness of as deposited films was 3.29 nm, while the films electron irradiated at 700 eV, show a lower RMS roughness of 2.62 nm. In this study, the FOM of as deposited TIO films is 6.82 × 10-3 Ω-1, while the films electron irradiated at 500 eV show the higher FOM value of 1.0 × 10-2 Ω-1. Thus, it is concluded that the post-deposition electron beam irradiation at 500 eV is the one of effective methods of crystallization and enhancement of opto-electrical performance of TIO thin film deposited on the PI substrate.

Effect of Post-deposition Rapid Thermal Annealing on the Electrical and Optical Properties of ZTO/Ag/ZTO Tri-layer Thin Films (급속열처리에 따른 ZTO/Ag/ZTO 박막의 전기적, 광학적 특성 개선 효과)

  • Song, Young-Hwan;Eom, Tae-Young;Heo, Sung-Bo;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.4
    • /
    • pp.151-155
    • /
    • 2017
  • The ZTO single layer and ZTO/Ag/ZTO tri-layer films were deposited on glass substrates by using the radio frequency (RF) and direct current (DC) magnetron sputtering and then rapid thermal annealed (RTA) in a low pressure condition for 10 minutes at 150 and $300^{\circ}C$, respectively. As deposited tri-layer films show the 81.7% of visible transmittance and $4.88{\times}10^{-5}{\Omega}cm$ of electrical resistivity, while the films annealed at $300^{\circ}C$ show the increased visible transmittance of 82.8%. The electrical resistivity also decreased as low as $3.64{\times}10^{-5}{\Omega}cm$. From the observed results, it is concluded that rapid thermal annealing (RTA) is an attractive post-deposition process to optimize the opto-elecrtical properties of ZTO/Ag/ZTO tri-layer films for the various display applications.

Performance Analysis for Mirrors of 30 cm Cryogenic Space Infrared Telescope

  • Park, Kwi-Jong;Moon, Bong-Kon;Lee, Dae-Hee;Jeong, Woong-Seob;Nam, Uk-Won;Park, Young-Sik;Pyo, Jeong-Hyun;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.321-328
    • /
    • 2012
  • We have designed a 30 cm cryogenic space infrared telescope for astronomical observation. The telescope is designed to observe in the wavelength range of 0.5~2.1 ${\mu}m$, when it is cooled down to 77 K. The result of the preliminary design of the support structure and support method of the mirror of a 30 cm cryogenic space infrared telescope is shown in this paper. As a Cassegrain prescription, the optical system of a 30 cm cryogenic space infrared telescope has a focal ratio of f/3.1 with a 300 mm primary mirror (M-1) and 113 mm secondary mirror (M-2). The material of the whole structure including mirrors is aluminum alloy (Al6061-T6). Flexures that can withstand random vibration were designed, and it was validated through opto-mechanical analysis that both primary and secondary mirrors, which are assembled in the support structure, meet the requirement of root mean square wavefront error < ${\lambda}/8$ for all gravity direction. Additionally, when the M-1 and flexures are assembled by bolts, the effect of thermal stress occurring from a stainless steel bolt when cooled and bolt torque on the M-1 was analyzed.

Effect of Annealing Temperature on the Luminescence Properties of Digital-Alloy InGaAlAs Multiple Quantum Wells (디지털 합금 InGaAlAs 다중 양자 우물의 열처리 온도에 따른 발광 특성)

  • Cho, Il Wook;Byun, Hye Ryoung;Ryu, Mee-Yi;Song, Jin Dong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.321-326
    • /
    • 2013
  • The effect of rapid thermal annealing (RTA) on the optical properties of digital-alloy InGaAlAs multiple quantum well (MQW) structures have been investigated by using photoluminescence (PL) and time-resolved PL measurements as a function of RTA temperature. The MQW samples were annealed from $700^{\circ}C$ to $850^{\circ}C$ for 30 s in a nitrogen atmosphere. The MQW sample annealed at $750^{\circ}C$ exhibited the strongest PL intensity and the narrowest FWHM (Full width at half maximum), indicating the reduced nonradiative recombination centers and the improved interfaces between the wells and barriers. The MQW samples annealed at $800^{\circ}C$ and $850^{\circ}C$ showed the decreased PL intensities and blueshifted PL peaks compared to $750^{\circ}C$-annealed sample. The blueshift of PL peak with increasing RTA temperatures are ascribed to the increase of aluminum due to intermixing of gallium (Ga) and aluminum (Al) in the interfaces of InGaAs/InAlAs short-period superlattices. The decrease of PL intensity after annealing at $800^{\circ}C$ and $850^{\circ}C$ are attributed to the interface roughening and lateral composition modulation caused by the interdiffusion of Ga and Al and indium segregation, respectively. With increasing RTA temperature the PL decay becomes slower, indicating the decrease of nonradiative defect centers. The optical properties of digital-alloy InGaAlAs MQW structures can be improved significantly with optimum RTA conditions.