• Title/Summary/Keyword: Option Pricing Models

Search Result 30, Processing Time 0.024 seconds

Asset Pricing From Log Stochastic Volatility Model: VKOSPI Index (로그SV 모형을 이용한 자산의 가치평가에 관한 연구: VKOSPI 지수)

  • Oh, Yu-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.1
    • /
    • pp.83-92
    • /
    • 2011
  • This paper examines empirically Durham's (2008) asset pricing models to the KOSPI200 index. This model Incorporates the VKOSPI index as a proxy for 1 month integrated volatility. This approach uses option prices to back out implied volatility states with an explicitly speci ed risk-neutral measure and risk premia estimated from the data. The application uses daily observations of the KOSPI200 and VKOSPI indices from January 2, 2003 to September 24, 2010. The empirical results show that non-affine model perform better than affine model.

The Foreign Exchange Exposure and Asymmetries on Individual Firms (개별기업의 환노출과 비대칭성에 관한 연구)

  • Lee, Hyon-Sok
    • The Korean Journal of Financial Management
    • /
    • v.20 no.1
    • /
    • pp.305-329
    • /
    • 2003
  • This work analyzes the influence of the dollar and yen currency on the rate of return of the individual firms and its symmetries based on the data from Jan. 5 1987 to Dec. 28, 2001. GARCH and autoregressive error models were used for on the daily data, due to the heteroscedascity and autoregression of the error terms, and as for the monthly data, this paper follows the autoregressive error models. Daily data fumed out to be a better explanatory variable in detecting exchange rate exposure, and EGARCH(1, 1) and GJR-GRARCH(1, 1) have higher competence in analyzing the daily data. Also, most of the exposed firms have been exposed in the negative region, and appreciation of exchange rate does not help enhancing the asset value of the domestic value. Analysis on the asymmetries let us conclude that high proportion of domestic firms face asymmetric exchange rate exposure, and that the pricing-to-market theory carries more conviction than the real option theory. Furthermore, monthly data are more precise in analysis of asymmetries.

  • PDF

Investigation of the Structure of the Strategic Net Present Value and Its Economic Interpretation through the Opportunity Cost Concept (기회비용 개념을 이용한 실물투자 프로젝트의 전략적 순 현재가치의 구성요소와 경제적 해석)

  • Kim, Gyutai;Choi, Sungho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.126-134
    • /
    • 2003
  • Among a variety of models proposed by so far to calculate the real options value when the investment decision about the underlying project may be delayed, the Black-Scholes and the binomial lattice models have been widely used and discussed by academics and practitioners. However these two models do not provide us with intuition into how it is constructed and what it does really mean. In this paper, we will therefore explore its components and practically more intuitive meaning. With the components explored, we developed the mathematical model to calculate the real options value and thus strategic net present value, based on the opportunity cost concept, for which the investment decision about the underlying project is postponed by one year. We will finally present a short illustrative example for readers better understanding on the model proposed in the paper.

A Selective Induction Framework for Improving Prediction in Financial Markets

  • Kim, Sung Kun
    • Journal of Information Technology Applications and Management
    • /
    • v.22 no.3
    • /
    • pp.1-18
    • /
    • 2015
  • Financial markets are characterized by large numbers of complex and interacting factors which are ill-understood and frequently difficult to measure. Mathematical models developed in finance are precise formulations of theories of how these factors interact to produce the market value of financial asset. While these models are quite good at predicting these market values, because these forces and their interactions are not precisely understood, the model value nevertheless deviates to some extent from the observable market value. In this paper we propose a framework for augmenting the predictive capabilities of mathematical model with a learning component which is primed with an initial set of historical data and then adjusts its behavior after the event of prediction.

DYNAMIC AUTOCORRELATION TEMPERATURE MODELS FOR PRICING THE WEATHER DERIVATIVES IN KOREA

  • Choi, H.W;Chung, S.K
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.771-785
    • /
    • 2002
  • Many industries like energy, utilities, ice cream and leisure sports are closely related to the weather. In order to hedge weather related risks, they invest their assets with portfolios like option, coupons, future, and other weather derivatives. Among weather related derivatives, CDD and HDD index options are mainly transacted between companies. In this paper, the autocorrelation system of temperature will be checked for several cities in Korea and the parameter estimation will be carried based on the maximum likelihood estimation. Since the log likelihood increase as the number of parameters increases, we adopt the Schwarz information criterion .

Dynamic Hedging Performance and Test of Options Model Specification (시뮬레이션을 이용한 동태적 헤지성과와 옵션모형의 적격성 평가)

  • Jung, Do-Sub;Lee, Sang-Whi
    • The Korean Journal of Financial Management
    • /
    • v.26 no.3
    • /
    • pp.227-246
    • /
    • 2009
  • This study examines the dynamic hedging performances of the Black-Scholes model and Heston model when stock prices drift with stochastic volatilities. Using Monte Carlo simulations, stock prices consistent with Heston's(1993) stochastic volatility option pricing model are generated. In this circumstance, option traders are assumed to use the Black- Scholes model and Heston model to implement dynamic hedging strategies for the options written. The results of simulation indicate that the hedging performance of a mis-specified Black-Scholes model is almost as good as that of a fully specified Heston model. The implication of these results is that the efficacy of the dynamic hedging performances on evaluating the specifications of alternative option models can be limited.

  • PDF

Comparing Energy Efficiency of MPI and MapReduce on ARM based Cluster (ARM 클러스터에서 에너지 효율 향상을 위한 MPI와 MapReduce 모델 비교)

  • Maqbool, Jahanzeb;Rizki, Permata Nur;Oh, Sangyoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.9-13
    • /
    • 2014
  • The performance of large scale software applications has been automatically increasing for last few decades under the influence of Moore's law - the number of transistors on a microprocessor roughly doubled every eighteen months. However, on-chip transistors limitations and heating issues led to the emergence of multicore processors. The energy efficient ARM based System-on-Chip (SoC) processors are being considered for future high performance computing systems. In this paper, we present a case study of two widely used parallel programming models i.e. MPI and MapReduce on distributed memory cluster of ARM SoC development boards. The case study application, Black-Scholes option pricing equation, was parallelized and evaluated in terms of power consumption and throughput. The results show that the Hadoop implementation has low instantaneous power consumption that of MPI, but MPI outperforms Hadoop implementation by a factor of 1.46 in terms of total power consumption to execution time ratio.

  • PDF

Information Spillover Effects among the Stock Markets of China, Taiwan and Hongkon (국제주식시장의 정보전이효과에 관한 연구 : 중국, 대만, 홍콩을 중심으로)

  • Yoon, Seong-Min;Su, Qian;Kang, Sang Hoon
    • International Area Studies Review
    • /
    • v.14 no.3
    • /
    • pp.62-84
    • /
    • 2010
  • Accurate forecasting of volatility is of considerable interest in financial volatility research, particularly in regard to portfolio allocation, option pricing and risk management because volatility is equal to market risk. So, we attempted to delineate a model with good ability to forecast and identified stylized features of volatility, with a focus on volatility persistence or long memory in the Australian futures market. In this context, we assessed the long-memory property in the volatility of index futures contracts using three conditional volatility models, namely the GARCH, IGARCH and FIGARCH models. We found that the FIGARCH model better captures the long-memory property than do the GARCH and IGARCH models. Additionally, we found that the FIGARCH model provides superior performance in one-day-ahead volatility forecasts. As discussed in this paper, the FIGARCH model should prove a useful technique in forecasting the long-memory volatility in the Australian index futures market.

Forecasting Long-Memory Volatility of the Australian Futures Market (호주 선물시장의 장기기억 변동성 예측)

  • Kang, Sang Hoon;Yoon, Seong-Min
    • International Area Studies Review
    • /
    • v.14 no.2
    • /
    • pp.25-40
    • /
    • 2010
  • Accurate forecasting of volatility is of considerable interest in financial volatility research, particularly in regard to portfolio allocation, option pricing and risk management because volatility is equal to market risk. So, we attempted to delineate a model with good ability to forecast and identified stylized features of volatility, with a focus on volatility persistence or long memory in the Australian futures market. In this context, we assessed the long-memory property in the volatility of index futures contracts using three conditional volatility models, namely the GARCH, IGARCH and FIGARCH models. We found that the FIGARCH model better captures the long-memory property than do the GARCH and IGARCH models. Additionally, we found that the FIGARCH model provides superior performance in one-day-ahead volatility forecasts. As discussed in this paper, the FIGARCH model should prove a useful technique in forecasting the long-memory volatility in the Australian index futures market.

A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems (지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구)

  • Kim, Sun-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.19-32
    • /
    • 2010
  • Volatility plays a central role in both academic and practical applications, especially in pricing financial derivative products and trading volatility strategies. This study presents a novel mechanism based on generalized autoregressive conditional heteroskedasticity (GARCH) models that is able to enhance the performance of intelligent volatility trading systems by predicting Korean stock market volatility more accurately. In particular, we embedded the concept of the volatility asymmetry documented widely in the literature into our model. The newly developed Korean stock market volatility index of KOSPI 200, VKOSPI, is used as a volatility proxy. It is the price of a linear portfolio of the KOSPI 200 index options and measures the effect of the expectations of dealers and option traders on stock market volatility for 30 calendar days. The KOSPI 200 index options market started in 1997 and has become the most actively traded market in the world. Its trading volume is more than 10 million contracts a day and records the highest of all the stock index option markets. Therefore, analyzing the VKOSPI has great importance in understanding volatility inherent in option prices and can afford some trading ideas for futures and option dealers. Use of the VKOSPI as volatility proxy avoids statistical estimation problems associated with other measures of volatility since the VKOSPI is model-free expected volatility of market participants calculated directly from the transacted option prices. This study estimates the symmetric and asymmetric GARCH models for the KOSPI 200 index from January 2003 to December 2006 by the maximum likelihood procedure. Asymmetric GARCH models include GJR-GARCH model of Glosten, Jagannathan and Runke, exponential GARCH model of Nelson and power autoregressive conditional heteroskedasticity (ARCH) of Ding, Granger and Engle. Symmetric GARCH model indicates basic GARCH (1, 1). Tomorrow's forecasted value and change direction of stock market volatility are obtained by recursive GARCH specifications from January 2007 to December 2009 and are compared with the VKOSPI. Empirical results indicate that negative unanticipated returns increase volatility more than positive return shocks of equal magnitude decrease volatility, indicating the existence of volatility asymmetry in the Korean stock market. The point value and change direction of tomorrow VKOSPI are estimated and forecasted by GARCH models. Volatility trading system is developed using the forecasted change direction of the VKOSPI, that is, if tomorrow VKOSPI is expected to rise, a long straddle or strangle position is established. A short straddle or strangle position is taken if VKOSPI is expected to fall tomorrow. Total profit is calculated as the cumulative sum of the VKOSPI percentage change. If forecasted direction is correct, the absolute value of the VKOSPI percentage changes is added to trading profit. It is subtracted from the trading profit if forecasted direction is not correct. For the in-sample period, the power ARCH model best fits in a statistical metric, Mean Squared Prediction Error (MSPE), and the exponential GARCH model shows the highest Mean Correct Prediction (MCP). The power ARCH model best fits also for the out-of-sample period and provides the highest probability for the VKOSPI change direction tomorrow. Generally, the power ARCH model shows the best fit for the VKOSPI. All the GARCH models provide trading profits for volatility trading system and the exponential GARCH model shows the best performance, annual profit of 197.56%, during the in-sample period. The GARCH models present trading profits during the out-of-sample period except for the exponential GARCH model. During the out-of-sample period, the power ARCH model shows the largest annual trading profit of 38%. The volatility clustering and asymmetry found in this research are the reflection of volatility non-linearity. This further suggests that combining the asymmetric GARCH models and artificial neural networks can significantly enhance the performance of the suggested volatility trading system, since artificial neural networks have been shown to effectively model nonlinear relationships.