• Title/Summary/Keyword: Optimum welding condition

Search Result 142, Processing Time 0.018 seconds

Heat Transfer Simulation and Temperature Measurement for Heat Input Control in Orbital Welding (오비탈 용접에서 입열량 제어를 위한 열전도 시뮬레이션 및 온도측정)

  • 김기정;김진우;강윤배;조상명
    • Proceedings of the KWS Conference
    • /
    • 2003.05a
    • /
    • pp.155-158
    • /
    • 2003
  • Orbital GTA welding is used in the pressure pipe line of auto-mobile, LNG and plant piping. To weld the pipe line safely, to some extent, the back bead must be formed in the root pass. In the plate welding the back bead can be observed, but in the pipe welding, the back bead can not be observed directly. In the welding around circumference, the parameters such as gravity, surface tension and arc force are different at each position. And then D/B for welding condition at each position are required. We also studied about the setting of the optimum orbital welding condition by controlling heat input.

  • PDF

An Experimental Study on Underwater Wet Arc Welding and Weldability (TMCP강의 수중 ARC용접 실험과 용접성)

  • 오세규;김민남
    • Journal of Ocean Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.67-73
    • /
    • 1987
  • The feasibility for a practical use of underwater wet arc welding process is experimentally investigated by using low hydrogen and high oxide type electrodes and TMCP steel plates. Main results are summarized as follows: 1)The absorption speed of the coated low hydrogen and high titanium oxide type eletrodes becomes constant after about 30 minutes in water, and more steeping time in water does not influnce welding arc behavior. 2) By bead appearance and X-ray inspection, the high titanium oxide type electrode is better than the low hydrogen type in underwater arc welding process. 3) The mechanical properties of underwater wet arc welds depend upon welding conditions more than those of in-air welds, and the optimum welding condition can be obtained. 4) Because of quenching effect by rapid cooling rate in underwater wet welding, the maximum hardness of HAZ is increased relatively higher in underwater wet welding, process.

  • PDF

A Study on the Welding of Aluminum Alloy and Stainless Steel by Laser (레이저를 이용한 알루미늄 합금과 스테인리스강의 용접)

  • Lee Chul ku;Chae Byoung Dae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.91-95
    • /
    • 2005
  • A feasibility study was performed to see the welding possibility of dissimilar thin-plat materials. These materials were welded for finding the optimum welding condition and evaluating the soundness of welding zone. The welding was attempted under the condition of laser power 500~600w, Pulse width 1.0~2.5ms and frequency 11~18Hz. In this study, the highest tensile-shear strength was observed at laser the low frequency. The suitable welding condition can be obtain at the large pulse width and the low frequency.

Effect of Welding Parameters on Wire Seam Weldability of Tin Coated Steels for Small Containers (용접 조건이 소형 용기용 Sn 도금 강재의 와이어 심 용접성에 미치는 영향)

  • 김기철;이기호;이목영
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.74-83
    • /
    • 1997
  • Effect of welding parameters such as current, speed and electrode pressure on the weld quality of tin coated steels for small containers was discussed in this paper. Welding was performed with low frequency wire seam welding system which was loaded with 1.5mm in diameter copper wire electrode. The welding parameters were monitored at the position close to the welding spot so as to minimize the instrumentation error, and the signals were stored into a digital data acquisition system before analysis. Results showed that critical current for sufficient nugget size increased as the base material thickness increased, while the width of the optimum welding range was reduced. The acceptable welding condition derived from this study was found to be effective within the thickness range of $\pm$10% of the nominal (0.25mm) thickness. Tin coating layer was proved not to affect seriously on the weld quality, i.e. strength and formability, since consumable wire electrode was used in this process. Test results also demonstrated that the welding current was thought to be the most effective parameter to form an acceptable weld, while welding speed or electrode pressure exerted less effect on the nugget formation. However, these two parameters played an important role because the former was related to the nugget overlap interval, and the latter, to the formation of expulsion during welding.

  • PDF

Welding behavior between Zn-coated steel plate and free cutting carbon steel rod by Nd:YAG laser beam (Nd:YAG 레이저빔을 이용한 아연도금강판(SECC)과 쾌삭강봉(SUM24L)의 용접에 관한 연구)

  • 노영태;김병철;김도훈;윤갑식
    • Laser Solutions
    • /
    • v.4 no.3
    • /
    • pp.30-39
    • /
    • 2001
  • This work was tamed out to apply a laser welding technique in joining between a Zn coated low carbon steel plate(SECC) and a free cutting carbon steel shaft(SUM24L) with or without W coating. Experiments were carried out and analysed by applying the FD(factorial design)method to obtain the optimum Laser welding condition. Optical microscopy, SEM, TEM and XRD analyses were performed in order to observe the microstructures in the fusion zone and the HAZ. Mechanical properties of the welded specimens were examined by microhardness test, tensile test and twist test. There was no flawed Zn in the fusion zone by EDS analysis. This means that during the welding process, Zn gas could be eliminated by appropriate shielding gas flow rate and butt welding gap. Ni coating itself did not influence on the tensile strength and hardness. However, twist bending strength and the weld depth of the Ni-coated free cutting carbon steel were lower as compared with those of the uncoated free cutting carbon steel. It was attributed to a lower absorbance of laser beam to the shin Ni surface. According to the results of the factorial design tests, the twist bending strength of welded specimens was primarily affected by pulse width, laser power, frequency and speed.

  • PDF

The Effect of Process Variables on Mechanical Properties and Formability in GTA Welds of Commercial Pure Titanium Sheet (순 Ti 박판 GTA 용접부의 기계적 성질 및 성형성에 미치는 공정변수의 영향)

  • Kim, Jee-Hoon;Hong, Jae-Keun;Yeom, Jong-Taek;Park, Nho-Kwang;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.73-80
    • /
    • 2010
  • In this work, the effect of welding variables on weldability of gas tungsten arc(GTA) welding was investigated with experimental analysis for a commercial pure(CP) titanium (Grade.1). The GTA welding tests on sheet samples with 0.5mm in thick were carried out at different process variables such as arc length, welding speed and electrode shape. In order to search an optimum arc length with full penetration, bead- on-plate welding before butt-welding were performed with different arc length conditions. From the bead- on-plate welding results, the optimum condition considering arc stability and electrode loss was obtained in the arc length of 0.8mm. Butt-welding tests based on the arc length of 0.8mm were carried out to achieve the optimum conditions of welding speed and electrode shape. Optimum conditions of welding speed and electrode shape were suggested as 10 mm/s and truncated electrode shape, respectively. It was successfully validated by the microstructural observation, tensile tests, micro-hardness tests and formability tests.

Welding Quality Evaluation on the LASER Welding Parts of the Zircaloy Spacer Grid Assembly for PWR Fuel Assembly(III) (경수로 원전연료용 질칼로이 지지격자체의 LASER 용접품질 평가(III))

  • Song Gi-Nam;Yun Gyeong-Ho;Lee Gang-Hui;Kim Su-Seong;Han Hyeong-Jun
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.42-44
    • /
    • 2006
  • A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly for pressurized water reactors(PWRs). The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral loads acting on the nuclear fuel assembly so as to keep the nuclear fuel assembly straight. To meet this requirement, it is necessary to weld the welding parts carefully and precisely. In this study, a series of welding tests were carried out to find an optimum welding condition. After examining and analyzing the specimens welded from the welding conditions, a recommendable laser welding condition was selected for the KAERI designed Zircaloy spacer grid assembly.

  • PDF

A Study on the Solid State Diffusion Bonding of Ti-6Al-4V Alloy (Ti-6Al-4V합금의 고상 확산접합에 관한 연구)

  • 강호정;강춘식
    • Journal of Welding and Joining
    • /
    • v.15 no.6
    • /
    • pp.32-40
    • /
    • 1997
  • Solid state diffusion bonding is the joining process performed by creep and diffusion, which is accelerated by heating below melting temperature and proper pressing, in vacuum or shielding gas atmosphere. By this process we can obtain sufficient joint which can't be expected from the fusion welding. For Ti-6Al-4V alloy, the optimum solid state diffusion bonding condition and mechanical properties of the joint were found, and micro void morphology at bond interface was observed by SEM. The results of tensile test showed sufficient joint, whose mechanical properties are similar to that of base metal. 850$^{\circ}$C, 3MPa is considered as the optimum bonding condition. Void morphology at interface is long and flat at the initial stage. As the percentage of bonded area increases, however, small and round voids are found. Variation of void shape can be explained as follows. As for the void shrinkage mechanism, at the initial stage, power law creep is the dominant, but diffusion mechanism is dominant when the percentage of bonded area is increased.

  • PDF

A Shaving Shear-Welding Process for Overlapped Aluminum Plates (중첩된 알루미늄 판재의 셰이빙 전단접합에 관한 연구)

  • Shang, L.;Kim, T.H.;Jin, I.T.
    • Transactions of Materials Processing
    • /
    • v.21 no.8
    • /
    • pp.467-472
    • /
    • 2012
  • Shaving shear-welding is a solid-state welding process, which utilizes plastic deformation of surplus material. The solid-state nature of this process contributes to high integrity and strength of the weld. The objective of this study was to investigate the effects of process variables on the material flow patterns and identify the process condition for obtaining the best weld. FEM simulations were carried out along with experimental characterizations. The results showed the importance of the cutter angles and the overlap lengths, and helped attain the optimum shaving shear-welding die and the best process condition.

CO₂ Weldability of Zn Coated Steel Sheet(3);Effect of Process Condition on the Generation of Weld Defects (아연도금강판의 CO₂ 용접특성(3);용접결함의 발생에 미치는 시공조건의 영향)

  • Lee, Jong Bong;An, Yeong Ho;Park, Hwa Sun
    • Journal of Welding and Joining
    • /
    • v.18 no.2
    • /
    • pp.196-196
    • /
    • 2000
  • Formation of the weld defect, such as a blowhole and a pit in lap-jointed fillet arc welds has been a serious problem in arc welding of Zn-coated steel sheet. In this study, the relationship among welding conditions, welding materials and defect formation was investigated in order to minimize these defects in the CO₂ welds. In addition, the arc stability of the commercial welding wires was evaluated for revealing their effects on defect formation. Main conclusions obtained are as follows:1) There was no difference between shear tensile strength of the sound welds and that of the welds with blowholes whose diameters are less than 0.5mm. However, the welds with blowholes whose diameters are equal or larger than 0.5mm and pits exhibited tensile strength 10~20% and 30~40% lower than that of the sound welds respectively.2) The optimum welding condition to effectively prevent or reduce the weld defects formation are as follows:- The welding variables of 220A-23V-100cm/min and 120A-190V-30cm/min were recommended for minimizing the weld defects.- The gap between the two sheets at the lap-joint should be controlled to more than 0.2mm- Solid wire was less susceptible to the formation of the weld defects than the flux-cored wire.- The low welding current condition produced less weld defects than the hihg welding current condition.3) One of the reason why the amount of the defect was reduced at the low welding current was the gas discharging by the active agitation of the molten pool, due to an increasing in the number of the short circuit. (Received September 27, 1999)