• 제목/요약/키워드: Optimum welding condition

검색결과 142건 처리시간 0.026초

고Si DP980강 스폿 용접 특성에 미치는 Phosphorus (P) 및 in-situ 후열처리 펄스 조건의 영향 (Effects of Phosphorus and in-situ Post-heat Pulse Conditions on Resistance Spot Weldability of High Si DP980 Steel Sheet)

  • 최두열
    • Journal of Welding and Joining
    • /
    • 제33권6호
    • /
    • pp.21-26
    • /
    • 2015
  • Recently, application of UHSS(Ultra High Strength Steels) whose tensile strength is over 1000MPa to car body structure are growing due to great needs for light weighting and improved crash worthiness. However, their poor weldability is one of obstacles to expand selecting to car body. In this study, effect of Phosphorus contents on resistance spot weldability of high elongation DP980 steel whose Si content is over 1% was investigated. The cross tension strength (CTS) was decreased showing partial interface fracture as Phosphorus content increase because of solidification segregation of Phosphorus. In order to improve resistance spot weldability by modification of welding condition, in-situ post-weld heating pulse was introduced after main pulse. The optimum cooling time between main and post pulse and post-pulse current condtion were determined through FEM welding simulation and DOE tests. The CTS was increased about 1.5 time showing plug fracture. The decrease of Phosphorus segregation was found to be a major reason for weld ductility and CTS improvement.

실험계획법에 의한 스테인레스강의 TIG용접특성 (TIG Welding Characteristics of Stainless Steel by Design of Experiment)

  • 정중교;박경도;강대민
    • 동력기계공학회지
    • /
    • 제18권3호
    • /
    • pp.106-111
    • /
    • 2014
  • Welding is very popular method for joining two or more metals. However, welding causes residual stress and distortion and these give a bad influence to the structure strength. In this paper, TIG welding technique was performed to investigate the joint characteristics of AISI321 steel. For its evaluation, the orthogonal array method and variance analysis were applied with three factors of electric current, travel speed and argon gas and also three levels of each factor to tensile tests for optimum design. From the results, the increaser weld speed the narrower bead width and the lower weld penetration. The increaser electric current the brighter argon gas and the wider bead width. Also weld speed influenced most on the tensile strength and presumption range of tensile strength at optimal condition from reliability 95% was estimated to $635.02{\pm}14.64$. In addition the increaser weld speed and electric current the fracture occurred around bead vicinity.

다구찌 방법을 이용한 $CO_2$ 자동용접의 공정변수 분석 (An Analysis for Process Parameters in the Automatic $CO_2$ Welding Using the Taguchi Method)

  • 김인주;박창언;김일수;성백섭;손준식;유관종;김학형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.596-599
    • /
    • 2004
  • The robotic $CO_2$ welding is a manufacturing process to produce high quality joints for metal and it could provide a capability of full automation to enhance productivity. Despite the widespread use in the various manufacturing industries, the full automation of the robotic $CO_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this research, an attempt has been made to develop an intelligent algorithm to predict the weld geometry (top-bead width, top-bead height, back-bead width and back-bead height) as a function of key process parameters in the robotic $CO_2$welding. To achieve this above objective, Taguchi method was employed using five different process parameters (tip gap, gas flow rate, welding speed, arc current, welding voltage) as a guide for optimization of process parameters.

  • PDF

$CO_2$ 자동용접의 공정변수와 표면 비드폭의 상관관계에 관한 민감도 분석 (Sensitivity Analysis to Relationship Between Process Parameter and Top-bead with in an Automatic $CO_2$ Welding)

  • 서주환;김일수;김인주;손준식;김학형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1845-1848
    • /
    • 2005
  • The automatic $CO_2$ welding is a manufacturing process to produce high quality joints for metal and it could provide a capability of full automation to enhance productivity. Despite the widespread use in the various manufacturing industries, the full automation of the robotic $CO_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this research, an attempt has been made to develop an intelligent algorithm to predict the weld geometry (top-bead width, top-bead height, back-bead width and back-bead height) as a function of key process parameters in the robotic $CO_2$welding. A sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters.

  • PDF

SEA 를 이용한 쉘과 실린더의 최적 용접 조건 (Optimum Welding Position between Shell and Cylinder based on SEA)

  • 안병하;이장우;전시문;양보석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.258-264
    • /
    • 2012
  • The overall aim of this paper is to determine coupling loss factor of welding point between shell and cylinder using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represents characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one way (uni-directional) power flow between multi-sub structures. Using these conditions, it is possible to find the equation of coupling loss factor expressed as above two loss factors. To check the effectiveness of above equation, this paper used two-stage application. The first approach was application between simple cylinder and shell. The next was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure.

  • PDF

극후판 Box-Column의 Lamellar 균열 감수성 평가 (Sensitivity Appraisal for Lamellar Tearing of Box-Column of Ultra Thick Plate)

  • 노찬승;박창수;김흥주;방한서;이창우
    • 한국해양공학회지
    • /
    • 제17권4호
    • /
    • pp.31-36
    • /
    • 2003
  • In case of this thick rolling-steel for a multistory building, a large oil-drilling structure, a large vessel, a bridge and so on, Lamella Tearing around the welded joint zone is the most serious problems. In order to prevent Lamella Tearing, not only is choice of material important, but also the comprehensive investigation for the structural design and the construction. The Lamella Tearing that is a staircase-shape occurs due to the contraction stress to the thickness direction of the plate and has the character that the cracks progress along the elongated inclusion by rolling. In general, because cracks occur at the heat affected zone and around HAZ, it is necessary to establish the safety and the confidence of the welded structure to restrain the welding defect such as Lamella Tearing. The mechanical approaches are the easier and more economical than the approaches of the material and the construction method. In addition, the appropriate welding profile and the optimum welding condition contribute toward the improvement of the productivity and influence on the standardization of the manufacturing technology.

Sm 490A강으로 제작된 T형 편면용접이음재의 굽힘피로강동에 관한 연구 (A Study on Bending Fatigue Strength of One Side Fillet Welded T-Joint by SM 490A steel)

  • 엄동석;강성원;이태훈;이해우;조수형
    • Journal of Welding and Joining
    • /
    • 제16권5호
    • /
    • pp.134-141
    • /
    • 1998
  • In this study, a fillet size for bending fatigue strength of one side fillet welded T-joint, used in box type girder and other welding structure, was investigated by bending fatigue test with or without edge preparation and burn through, with variation of joint shape. As a result, the following conclusions were obtained. (1) In one side fillet welded T-joint, the larger the leg length, the greater the bending fatigue strength. The increase in bending fatigue strength. (2) One side filet welded T-joint with edge preparation showed higher bending fatigue strength than that with twofold-large leg length and without edge preparation. (3) In one side fillet welded T-joint without edge preparation, both manual welding and automatic welding were carried out with same condition. In this case, automatic welding shoed deeper penetration and more increased horizontal leg length than manual welding, so that automatic welding offers grater bending fatigue strength. (4) For one side fillet welded T-joint without edge preparation, the ratio(h/t) of the leg length (h) and the main plate thickness (t) in which toe crack can occur was 1.2 over. (5) In one side fillet welded T-joint with edge preparation, the burn through led to reduced bending fatigue strength. However, this bending fatigue strength was higher than that of one side fillet welded T-joint without edge preparation and with a larger leg length.

  • PDF

E.B 용접된 18% Ni 마르에이징강 박판의 인장이음강도에 관한 연구 (A Study of Tensile Strength in 18% Ni Maraging Steel Sheet Welded with Electron Beam)

  • 정병호;김무길;김원녕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권2호
    • /
    • pp.157-165
    • /
    • 1997
  • The strength level of welded joint in room temperature and elevated temperature up to $600^{\circ}C$ was investigated in 250 and 300 grade 18% Ni maraging steel sheet welded with electron beam. The results obtained in this study are as follows; 1. Optimum welding heat input was 600J/cm in 1.0mm thickness and the room temperature tensile strength, joint efficiency of welded joint treated with optimum aging condition were found to be about 166kg/$mm^2$, 95% in 250 grade, 189kg/$mm^2$, 92% in 300 grade maraging steel sheet, respectively. 2. Tensile strength of welded joint in room temperature increased slightly by aging after repeated solution heat treatment, but the fracture mode showed a shear. 3. Joint efficiency at a temperature between $540^{\circ}C$and $600^{\circ}C$ found to be about 72% to 55%, but the joint efficiency exceeded about 90% below $300^{\circ}C$. 4. The fracture occurred in most weld metal, and the fracture surface showed a shallow dimple.

  • PDF

Fe 기내열합금의 액상확상접합용 삽입금속의 개발에 관한 연구 (A Study on Development of Insert Metal for Liquid Phase Diffusion Bonding of Fe Base Heat Resistance Alloy)

  • 강정윤;김인배;이상래
    • Journal of Welding and Joining
    • /
    • 제13권3호
    • /
    • pp.147-156
    • /
    • 1995
  • The change of microstructure in the bonded interlayer and tensile properties of joints were studied for liquid phase diffusion bonding using STS-310 and Incoloy-825 as base metal and base metal+B alloy as insert inetal. Main experimental results obtained in this study are as follows. 1) The optimum amount of B addition into the insert metal was found to be about 4mass%. 2) When isothermal solidification was completed, the microstructure in the bonded interlayer was the same with that of the base metal because of the grain boundary migration in the bonded interlayer. 3) All of the tensile specimen fractured at base metal and joints bonded at optimum condition exhibited tensile properties in excess of base metal requirements. 4) It was determined that fine car-borides and bordes such as M$_{23}$(C,B)$_{6}$, Cr$_{2}$B, and CrB in STS-310S and TiB in Incoloy-825 exist at the grain boundary around bonded interlayer. These precipitates almost disappeared after homogenizing treatment at 1373K for 86.4ks.s.

  • PDF

Effect of Cu-Additions on the Hand-Over Layer of an Aluminum Alloy - Hardening for the Top Ring Groove of Automotive Piston by the Plasma Transferred Arc Welding Process -

  • Moon, J.H.;Seo, C.J.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • 제1권1호
    • /
    • pp.58-62
    • /
    • 2001
  • The surface of AC8A Ah alloy was modified by adding the Cu powder using a Plasma Transferred Arc (PTA) welding process. Under the optimum fabricating conditions, the modified surface of AC8A Ah alloy was observed to possess the sound microstructure with a minimum porosity. Hardness and wear resistance properties of the as-fabricated alloy were compared with those of the 76 heat-treated one. In case of the as-fabricated alloy, the hardness of the modified layer was twice that of the matrix region. Although significant increase in the hardness of the matrix region was observed after T6 heat treatment, the hardness of the modified layer was not observed to change. The wear resistance of the modified layer was significantly increased compared to that of the matrix region. The microstructure of a weld zone and the matrix region were investigated using the optical microscope, scanning electron microscope (SEM), electron probe microanalysis (EPMA), and transmission electron microscope (TEM). The primary and eutectic silicon in the weld zone were finer and more curved than in the matrix region, while some precipitates has had been found therein. According to the TEM observation, the predominant precipitate present in the weld zone was the $\theta$'phase, which is precipitated during cooling by rapid solidification in PTA welding process. Improvement of hardness and wear properties in the weld zone in the as-fabricated condition can be explained based on the presence of $\theta$’precipitates and fine primary and eutectic silicon distribution.

  • PDF