• 제목/요약/키워드: Optimum treatment condition

검색결과 689건 처리시간 0.025초

The Detergency Improvement and Fabric Damage in the Washing Treatment by Commercial Bleaching Agents (시판표백제에 의한 농축세제의 세척성 향상과 섬유 손상)

  • 배정숙
    • Journal of the Korean Home Economics Association
    • /
    • 제37권2호
    • /
    • pp.113-126
    • /
    • 1999
  • In order to investigate the detergency effect of stained cotton and PET fabric, respectively, these fabrics stained with solid soils such as carbon black, liquid paraffin, and fat and examined the detergency effect in the optimum washing condition. The evaluation of washing efficiency of washed fabrics studied by using the surface reflectance measurement before and after washing treatment. The maximum detergency effect of stained cotton and PET fabric obtained in the mixed washing liquor-bleachig agen(ml)/concentrated washig agent(g/l). To obtain the excellent detergency effect, 2-step washing treatment, pre-washing by bleaching agent only and washing by concentrated detergent, is preferred. In comparing the detergency of polyester and cotton fabric, the detergency of stained polyester fabric superior than that of stained cotton fabric because of the difference of adhesive force between soil material and fabric in preparing soled stained fabric. In this study, we also studied the degree of fabric damage by the measurement of tensile strength change. From the results of the tensile strength measurement, the damage of washed fabric before and after washing treatment was nearly changed.

  • PDF

Enzymatic Processing and Property of Denim by Acid Cellulase (산성 셀룰라제 이용한 데님의 효소가공 및 물성)

  • Seo, Hye-Young;Song, Wha-Soon;Kim, Hye-Rim
    • Fashion & Textile Research Journal
    • /
    • 제11권3호
    • /
    • pp.465-468
    • /
    • 2009
  • In this study, acid cellulase was used to treat denim fabrics by varying pH, temperature, enzyme concentration, treatment time and non-ionic surfactant (Triton X-100) concentration. Treatment condition was controlled based on the weight loss. The characteristics of enzyme-treated fabrics were measured in terms of tearing strength, stiffness, and color difference. The optimum conditions for cellulase treatment of denim fabric were pH 5.0, $50^{\circ}C$, 3% (o.w.f.), 90minutes. The weight loss did not change significantly with the addition of a non-ionic surfactant, but it improved when more non-ionic surfactant were used. The tearing strength of enzyme-treated denim fabrics did not deteriorate. The stiffness of the treated fabrics improved with the enzymatic treatment with and without the non-ionic surfactant. The difference in color of fabrics treated with enzyme increased.

Effects of Projection Height and Post Treatment on the Resistance Projection Weldability of Zn Coated Sheet Steels (아연도금 강재의 용접성에 미치는 돌기 성형 및 피복조건의 영향)

  • 김기철;이목영
    • Journal of Welding and Joining
    • /
    • 제17권5호
    • /
    • pp.83-88
    • /
    • 1999
  • In this paper resistance projection weldability of Zn coated steels with post treatment has been discussed. Projection welding was performed by a condenser discharge type power source which was equipped with welding parameter monitoring system. Mechanical test results indicated that the effect of post coatings on the projection front changed showing very small very small spattering at the weld strength was negligible. However, contamination rate of the block electrode varied depending on the post treatment coatings. Test results also showed that projection height before welding should be kept to be 80-100% of the specimen thickness as far as the surface quality was taken into consideration. Based on the high speed photography, discharge condition at the beginning stage of the welding process. It was considered that the spattering reduced the weld strength slightly at the optimum heat input range.

  • PDF

유리섬유/에폭시 복합절연재료의 계면 접착력 개선에 관한 연구 1

  • 이종호;황영한;이규철
    • Electrical & Electronic Materials
    • /
    • 제8권2호
    • /
    • pp.136-143
    • /
    • 1995
  • With the contact angle of phase dropping epoxy resin on the inorganic filler(glass plate) surface treated with air plasma, we have studied about the interfacial wettability between epoxy resin and glass plate as a simple model of glass fiber reinforced composite materials. The contact angle on the inorganic filler surface varied with surface treatment conditions. The contact angle significantly depends on plasma treating time and environment temperature in the oven. From the view point of plasma treatment condition in this work, when discharge conditions were pressure 200mtorr, voltage 800V, magnetic flux density 8OGauss, optimum treatment time were proved as 3,4 and 5 minutes for the environment of >$80^{\circ}C$, >$100^{\circ}C$ and >$120^{\circ}C$, respectively.

  • PDF

Glass-Ceramics of $Li_2O-Al_2O_3-SiO_2$ System Produced by Sintering (소결법에 의한 $Li_2O-Al_2O_3-SiO_2$계 결정화 유리의 제조)

  • 연석주
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제3권2호
    • /
    • pp.176-184
    • /
    • 1993
  • The glasses, which the $\beta$-spodumene as the principal crystalline phase could be precipitated, were melted by adding >, $P_2O_5, TiO_2, ZrO_2 in the Li_2O-Al_2O_3-SiO_2$ system. In order to achieve the glass-ceramic body of near-theoritical density by sintering method, the optimum condition of heat treatment, the effect of glass powder size and the properties were investigated by DTA, XRD, bulk density, thermal expansion and SEM. Addition of $P_20_5$ imProved the tendency of sintering and the sample with 9wt% $P_20_5$ content was the most dense OOdy by sintering method. The optimum condition of heat treatmemt was sintered for densitification at $740^{\circ}C$ and crystallized at $950^{\circ}C$. In the optimum condition, the relative density was above 90% and the thermal expansion was negative about $-1{\times}10^{-7}/^{\circ}C$.

  • PDF

A Study on the Uplift Capacity of Cylindrical Concrete Foundations for Pipe-Framed Greenhouse (파이프 골조온실의 원주형 콘크리트 기초의 인발저항력에 관한 연구)

  • ;;;;Shino Kazuo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • 제40권4호
    • /
    • pp.109-119
    • /
    • 1998
  • Recently pipe-framed greenhouses are widely constructed on domestic farm area. These greenhouses are extremely light-weighted structures and so are easily damaged under strong wind due to the lack of uplift resistance of foundation piles. This experiment was carried out by laboratory soil tank to investigate the displacement be haviors of cylindrical pile foundations according to the uplift loads. Tested soils were sampled from two different greenhouse areas. The treatment for each soil type are consisted of 3 different soil moisture conditions, 2 different soil depths, and 3 different soil compaction ratios. Each test was designed to be repeated 2 times and additional tests were carried out when needed. The results are summarized as follows : 1. When the soil moisture content are low and/or pile foundations are buried relatively shallow, ultimate uplift capacity of foundation soil was generated just after begining of uplift displacement. But under the high moisture conditions and/or deeply buried depth, ultimate up-lift capacity of foundation soil was generated before the begining of uplift displacement. 2. For the case of soil S$_1$, the ultimate uplift capacity of piles depending on moisture contents was found to be highest in optimum moisture condition and in the order of air dryed and saturated moisture contents. But for the case of soil S$_2$, the ultimate uplift capacity was found to be highest in optimum moisture condition and in the order of saturated and air dryed moisture contents. 3. Ultimate uplift capacities are varied depending on the pile foundation soil moisture conditions. Under the conditions of optimum soil moisture contents with 60cm soil depth, the ultimate uplift capacity of pile foundation in compaction ratio of 80%, 85%, and 90% for soil 51 are 76kg, 115kg, and 155kg, respectively, and for soil S$_2$are 36kg, 60kg, and 92kg, respectively. But considering that typical greenhouse uplift failure be occurred under saturnted soil moisture content which prevails during high wind storm accompanying heavy rain, pile foundation is required to be designed under the soil condition of saturated moisture content. 4. Approximated safe wind velosities estimated for soil sample S$_1$and S$_2$are 32.92m/s and 26.58m/s respectively under the optimum soil condition of 90% compaction ratio and optimum moisture content. But considering the uplift failure pattern under saturated moisture contents which are typical situations of high wind accompanying heavy rain, the safe wind velosities for soil sample S$_1$and S$_2$are not any higher than 20.33m/s and 22.69m/s respectively.

  • PDF

A Study on the Investigation of Optimal Peening Intensity for Shot Peened Spur Gear (쇼트피닝가공한 평기어의 최적 피닝강도 탐색에 관한 연구)

  • Cheong Seong-Kyun;Lee Dong-Sun;Lee Kook-Jin;Kim Tae-Hyung
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.185-190
    • /
    • 2005
  • The shot peening process is often used to improve fatigue properties of metal parts. Among them, It is the most use in an auto-component. In order to achieve optimum, repeatable and reliable fatigue enhancement from the shot peening process, the important shot peening parameters must be controlled. In this paper, the optimum peening intensity (Almen intensity) condition is investigated by experiment. The Spur Gear steel was used to investigate shot peening effects. The fatigue life at $\sigma_a=1,050$ and $\sigma_a=1,250MPa$ first gently increases, then drops gently as peening intensity increases compared with unpeened specimen. Experimental results show that the optimum peening intensity range is $0.391\~0.434mmA$..So the fatigue strength and fatigue life have been tremendously increased by optimum-peening treatment. However, the fatigue strength and fatigue life have been decreased by over peeing.

  • PDF

Determination of the optimum filtration conditions in pretreatment of seawater desalination by reverse osmosis (역삼투법 해수담수화 전처리 여과공정의 최적조건)

  • Kim, Seung-Hyun;Yoon, Jong-Sup;Lee, Seockheon
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제23권2호
    • /
    • pp.207-214
    • /
    • 2009
  • This study examines the optimum filtration conditions in pretreatment of seawater desalination by reverse osmosis. For this purpose, Masan bay seawater is treated through a gravity filter column while $FeCl_3$ is added as coagulant. The conditions of coagulantd osage, media depth, filtration rate, and backwash time are evaluated. The study results show that the filtrate quality improved with increasing coagulant dosage, but head loss rapidly increased. After 4mg/L, the unit filter run volume reduced to less than $200m^3/m^2$. Considering the head loss development, 4mg/L is determined as the optimum dosage. The better filtrate qualities are obtained with depth of 100cm than that of 80cm. The two stage filtration, which outperformed the single stage filtration, is suggested for treatment of Masan bay. The filtration rate of 5m/h is decided as the optimum condition considering the head loss development. At 10m/h, the filtrate quality deteriorated even though the extent was minimal, and head loss increased rapidly. The backwash time of 10 min is decided appropriate.

Enzymatic Modification of Wool/Polyester Blend Fabrics Using Lipase from Aspergillus Oryzae (리파제에 의한 양모/폴리에스터 혼방직물의 동시 개질)

  • Song, Hyun-Joo;Kim, Hye-Rim;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • 제33권7호
    • /
    • pp.1121-1127
    • /
    • 2009
  • This study presents an eco-friendly and one-step finishing method for modifying fiber property that reduces fiber damage in wool/polyester blend fabrics. Lipase from aspergillus oryzae is used in this experiment. The enzymatic treatment condition is optimized by measuring the relative activity of lipase depending on pH level, temperature, concentration of lipase, and treatment time. The concentration of $CaCl_2$as an activator is determined by the characteristics including whiteness, water contact angle (WCA), and dyeing property. The modified properties of lipase treated fabrics are tested for pill resistance and surface morphology. The results are described as follows: the optimum condions for lipase treatment constitute a pH level of 8.0, treatment temperature of 40$^{\circ}$$_C$, concentration of lipase at 100% (o.w.f), and a treatment time of 90 minutes. $CaCl_2$helps in raising lipase activation, and the optimum concentration is 50mM. The whiteness, wet ability, and pill resistance of lipase treated fabrics improves as compared to the control. The dyeing property of lipase treated fabrics improved by 53.5% after using the one-bath dyeing method. This means that lipase treatment can save time and cost during the dyeing process since lipase treatment modifies wool and polyester fibers. The surface of lipase treated wool fibers do not exhibit any change, however voids and cracks manifest on the surface of lipase treated polyester fibers.

Dyeing Properties and Scouring of Wool/Polyester Blend Fabrics Using Papain from Carica Papaya (파파인 가공한 양모/폴리에스터 혼방직물의 정련 및 염색성)

  • Song, Hyun-Joo;Kim, Hye-Rim;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • 제33권2호
    • /
    • pp.213-221
    • /
    • 2009
  • This study provides the optimum papain treatment method and its effect on wool/polyester blend fabrics. The enzymatic treatment condition is optimized depending on its pH level, temperature, concentration of enzyme, treatment time and concentration of activators. The characteristics of samples treated with the papain are measured using weight loss, tensile strength, whiteness, WCA, dyeing property and surface micrographs. The results are described as follows: According to measuring weight loss, tensile strength and whiteness, a pH level of 7.5, $70^{\circ}C$, 10% papain(o.w.f.) and 60minutes of treatment time are optimized for papain treatment. L-cysteine and sodium sulfite are able to activate the papain. The optimum concentrations of them are 10mM and 50mM respectively. The WCA of fabrics is decreased since papain treatment makes wool/polyester blend fabrics more hydrophilic. Scouring with papain treatment improves whiteness and dyeing property of fabrics. The dyeing property of papain-treated fabrics is enhanced simply by a single step dyeing process using a basic dye. The surface of wool treated with papain in the presence of L-cysteine shows to be descaled. The surface of wool fibers in the presence of sodium sulfite, however, shows it is hydrolyzed evenly instead of being descaled. The surface of papain treated polyester fibers shows cracks and voids.