• Title/Summary/Keyword: Optimum method

Search Result 6,695, Processing Time 0.028 seconds

Optimum Design of Journal Bearings Using Simulated Annealing Method (모사 어닐링법을 이용한 저널 베어링의 최적 설계)

  • Goo, H.E.;Song, J.D.;Lee, S.J.;Yang, B.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.2
    • /
    • pp.45-52
    • /
    • 2004
  • This paper describes the optimum design for journal bearings by using simulated annealing method. Simulated annealing algorithm is an optimization technique to calculate global and local optimum solutions. Dynamic characteristics of the journal bearing are calculated by using finite difference method (FDM), and these values are used for the procedure of journal bearing optimization. The objective is to minimize the resonance response (Q factor) of the simple rotor system supported by the journal bearings. Bearing clearance and length to diameter ratio are used as the design variables.

  • PDF

Optimum Allocation of Pipe Support Using Combined Optimization Algorithm by Genetic Algorithm and Random Tabu Search Method (유전알고리즘과 Random Tabu 탐색법을 조합한 최적화 알고리즘에 의한 배관지지대의 최적배치)

  • 양보석;최병근;전상범;김동조
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.3
    • /
    • pp.71-79
    • /
    • 1998
  • This paper introduces a new optimization algorithm which is combined with genetic algorithm and random tabu search method. Genetic algorithm is a random search algorithm which can find the global optimum without converging local optimum. And tabu search method is a very fast search method in convergent speed. The optimizing ability and convergent characteristics of a new combined optimization algorithm is identified by using a test function which have many local optimums and an optimum allocation of pipe support. The caculation results are compared with the existing genetic algorithm.

  • PDF

A Study on the Optimum Chemical Composition of Insert Metal for Liquid Phase Diffuse Bonding (액상확산접합용 인서트금속의 화학조성 최적화에 관한 연구)

  • 김대업;정승부;강정윤
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.90-97
    • /
    • 2000
  • Effect of alloy elements on joinability of insert metal for liquid phase diffusion bonding of heat resistant alloys was investigated in this study. Also, optimum chemical composition of insert metal was explained using interpolation method. The insert metals utilized was commercial Ni-base amorphous foils and newly developed Ni-base filler metals with B, Si and Cr in this study. Melting point and critical interlayer width(CIW) decreased with increasing additional amount of B, Si and Cr, melting point lowering element of the insert metal. Optimized chemical composition of insert metals could be estimated by interpolation method. The optimum amount of B, Si, Cr addition into the insert metal were found to be about 3%, 4% and 3%, respectively. The measured characteristic values, melting point, microhardness in the bonded interlayer and CIW of the insert metals were the almost identical to ones of the calculated results by interpolation method.

  • PDF

Performance Analysis and Optimum Design Method of Positive Displacement Turbine for Small Hydropower (소수력발전용 용적형수차의 성능해석과 최적설계법에 관한 연구)

  • Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.514-521
    • /
    • 2007
  • There has been considerable interest recently in the topic of renewable energy. This is primarily due to concerns about environmental impacts. Moreover, fluctuating and rising oil prices, increases in demand, supply uncertainties and other factors have led to increased calls for alternative energy sources. Small hydropower, especially using water supply system, attracts high attentions because of relatively lower cost and smaller space requirements to construct the plant. Moreover. newly developed positive displacement turbine has high acceptability for the system. Therefore, the purpose of this study is focused on the examination of the performance characteristics and proposition of a optimum design method of the turbine for the improvement of the performance. The results show that newly proposed optimum design method for the turbine has high accuracy of performance prediction and good applicability for the performance improvement of the turbine.

Optimum Design of Reinforced Concrete Beam Using Genetic Algorithms (유전자 알고리즘을 이용한 철근콘크리트 보의 단면 최적설계)

  • Kim, Bong-Ik;Kwon, Jung-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.131-135
    • /
    • 2009
  • We present an optimum design method for a rectangular reinforced concrete beam using Genetic Algorithms. The optimum design procedure in this paper employs 2 design cases: i) all of the design variables (b, d, As) of the rectangular reinforced concrete section are used pseudo-continuously, ii) one is pseudo-continuous for the concrete cross section (b, d) and the other is discrete, using an index for the steel area (As). The optimum design in this paper uses Chakrabarty's model. In this paper, the Genetic Algorithms use the method of Elitism and penalty parameters to improve the fitness in the reproduction process, which leads to very practical designs. The optimum design of the steel area in the examples uses ASTM standard reinforcing bars (#3~#11, #14, #18).

Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm

  • Degertekin, S.O.;Hayalioglu, M.S.;Gorgun, H.
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.535-555
    • /
    • 2009
  • The harmony search method based optimum design algorithm is presented for geometrically non-linear semi-rigid steel frames. Harmony search method is recently developed metaheuristic algorithm which simulates the process of producing a musical performance. The optimum design algorithm aims at obtaining minimum weight steel frames by selecting from standard set of steel sections such as European wide flange beams (HE sections). Strength constraints of Turkish Building Code for Steel Structures (TS648) specification and displacement constraints were used in the optimum design formulation. The optimum design algorithm takes into account both the geometric non-linearity of the frame members and the semi-rigid behaviour of the beam-to-column connections. The Frye-Morris polynomial model is used to calculate the moment-rotation relation of beam-to-column connections. The robustness of harmony search algorithm, in comparison with genetic algorithms, is verified with two benchmark examples. The comparisons revealed that the harmony search algorithm yielded not only minimum weight steel frames but also required less computational effort for the presented examples.

Estimation of the optimum TBM disc cutter spacing by the dynamic fracture modeling (동적 파괴모델링에 의한 TBM 디스크 커터의 최적 절삭간격 예측)

  • You, Sang-Hwa;Chang, Soo-Ho;Cho, Jung-Woo;Jeon, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.1
    • /
    • pp.81-90
    • /
    • 2008
  • It is of great importance to determine the optimum cutter spacing in TBM. In order to determine the optimum cutter spacing, a series of cutting tests by linear cutting machine (LCM) are performed with changing cutter space. This study showed that a numerical method for estimating the optimum cutter spacing could be developed by AUTODYN-3D in order to overcome the limitation of LCM test. By using this method, the optimum cutter spacing of Hwangdeung granite was estimated.

  • PDF

The Effect of Optimum In-process Electrolytic Dressing in the Mirror-like Grinding of Die steel by Superfind Abrasive wheel (초지립 지석에 의한 금형강 경면연삭시 최적 연속 전해드레싱의 영향)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.16-25
    • /
    • 1999
  • In recent years, grinding techniques for precision machining of brittle materials used in die, model and optical parts have been improved by using superfine abrasive wheel and precision grinding machine. The completion of optimum dressing of superfine abrasive wheel makes possible the effective precision grinding of die steel(STD-11). In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This method can carry out optimum in-process electrolytic dressing of superfine abrasive wheel. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of STD-11.

  • PDF

Experimental Test for the Optimum Design of a Rotor Slot in Three Phase Inverter-fed Induction Motor (3상 인버터 구동 유도전동기의 회전자 1 슬롯 최적설계에 관한 실험)

  • Kim, J.W.;Kwon, B.I.;Kim, B.T.;Jo, Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.131-134
    • /
    • 2002
  • The optimum design technology using combind F.E.M and eauivalent circuit is so fast and accurate that it can be applied to the optimum rotor design of an inverter-fed induction motor in high efficiency motor making industry. The optimum characteristics fer a rotor slot model of a 3 phase inverter-134 nduction motor was previously verified by a time-step F.E.M. In this paper, four verification models with the design variables near the optimum point are designed to chech whether the characteristics of a slot model presented is not less than those of the near models. The outputs of whole models are analyzed in a time-step Finite Element Method and compared in the experimental test. The economical and efficient selecting method of design variables fur the computer simulation and experimental test is presented in order to assure the optimum point.

  • PDF

Optimum design of steel bridges including corrosion effect using TLBO

  • Artar, Musa;Catar, Recep;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.607-615
    • /
    • 2017
  • This study presents optimum design of plane steel bridges considering corrosion effect by using teaching-learning based optimization (TLBO) method. Optimum solutions of three different bridge problems are linearly carried out including and excluding corrosion effect. The member cross sections are selected from a pre-specified list of 128 W profiles taken from American Institute of Steel Construction (AISC). A computer program is coded in MATLAB to carry out optimum design interacting with SAP2000 using OAPI (Open Application Programming Interface). The stress constraints are incorporated as indicated in AISC Allowable Stress Design (ASD) specifications and also displacement constraints are applied in optimum design. The results obtained from analysis show that the corrosion effect on steel profile surfaces causes a crucial increase on the minimum steel weight of bridges. Moreover, the results show that the method proposed is applicable and robust to reach the destination even for complex problems.