• 제목/요약/키워드: Optimum light intensity

검색결과 172건 처리시간 0.015초

인삼생육의 최적광량에 관한 연구 제1보. 광도가 인삼의 지상부생육 및 근수량에 미치는 영향 (Studies on the Optimum Light Intensity for Growth of Punux ginseng ( I ) Effects of Light Intensity on Growth of Shoots and Roots of Ginseng Plants)

  • 이종화;이종철
    • Journal of Ginseng Research
    • /
    • 제6권1호
    • /
    • pp.38-45
    • /
    • 1982
  • To determine the optimum light intensity for growth of ginseng plants, change of temperature, moisture content in son, occurrence alternaria blight, defoliation rate, chlorophyll contents, and growth of shoots and roots were investigated under different light intensity such as 5%, 10%, 20% and 30% light transmittance rare(L.T.R.). The results obtained were as follows. 1. Maximum temperature under the shading was increased as the increase of light intensity, whereas soil moisture content decreased 2. As the increase of light intensity, stem and Peduncle length, leaf area, and chlorophyll contents decreased significantly but length and width of the leaf was not significant, while stem diameter, special leaf weight and chlorophyll a/chl. b ratio increased 3. Stem color was shown dark purp!e as the increase of light intensity. 4. Photosynthesis during the day was highest at 9 A.M. and decreased as time passed in all plots. The means of photouynthesis during the day showed in the order of 20%, 10%, 30%, 5% L.T.R., and optimum light intensity for highest photosxthesis was 18.4% L.T.R. by theoritical equation. 5. It was showed a tendency that alternaria leaf blight of ginseng plants was increased as the increase of light intensity. 6. Defoliation rate of ginseng plants was increased as the increase of light intensity, especially all plants were defoliated by late June without shading. 7. Yield percentage of the rear line was increased as the increase of light intensity. Root weight per plant showed in the order of 20%, 10%, 30%, 5% L.T.R., and optimum light intensity for the best yield was 18.5% L.T.R. by theeritical equation.

  • PDF

광량 및 광질이 고려인삼의 생육과 품질에 미치는 영향 II. 광량과 재식밀도와의 관계 (Effects of Light Intensity and Quality on the Growth and Quality of Korean Ginseng (Panax ginseng C.A. Meyer) II. Relationship between Light Intensity and Planting Density)

  • 천성기;목성균;이성식
    • Journal of Ginseng Research
    • /
    • 제15권1호
    • /
    • pp.31-35
    • /
    • 1991
  • In order to know the optimum planting density under shading structures at different light intensity, We investigated the growth status, distribution of ginseng leaf area, correlation between planting density and root weight per plant and yield, correlation between leaf area index and root weight per plant and yield. According to the increase of planting density the leaf area per plant was decreased, but leaf area index (L.A.I) was increased. Ginseng leaf population at different lines under common straw shading were distributed mainly in frost lines but polyethylene net shading at 10fo light intensity were distributed equally in all lines. Optimum planting density in common straw shading at 5% light intensity was 55 plant per tan (90 cmX180 cm) and polyethylene net shading 81 10% light intensity was 60 plant per tan, in consideration of root weight and yield. Optimum leaf area index was 2.4 under common straw shading at 5% light intensity but was 2.7 under polyethylene net shading at 10% light intensity.

  • PDF

층층나무와 말채나무 양묘(養苗)시 적정(適正) 차광율(遮光率)에 관한 연구(硏究) (Studies on Optimum Shading for Seedling Cultivation of Cornus controversa and C. walteri)

  • 김종진
    • 한국산림과학회지
    • /
    • 제89권5호
    • /
    • pp.591-597
    • /
    • 2000
  • 본 실험은 층층나무(Cornus controversa Hemsl)와 말채나무(Cornus walteri Wanger)의 양묘시 적정 차광율을 구명하고자 상대광도가 100%(대조구), 50%, 30%, 10% 및 2%로 조절된 피음포지에서 실시하였다. 두 수종의 수고생장은 상대광도 50%에서 가장 높은 생장을 보였고, 근원경생장은 대조구와 50%구에서 서로 비슷하게 높은 생장을 기록하였다. 물질생산량을 보면 층층나무의 전체 생산량의 경우 50%에서 자연전광의 대조구보다 높은 생산량을 보였으나 지하부의 생산량은 다소 낮았다. 말채나무는 50%에서 전체 생산량은 대조구보다 낮았으나 지상부 생산량은 다소 높은 생산량을 보였다. 30%이하의 상대광도에서는 수고생장, 근원경생장 및 물질생산량이 급격히 감소하였다. 두 수종 모두 30%에서 가장 높은 T/R율을 기록하였으며 전체적으로 말채나무의 T/R율이 층층나무의 T/R율 보다 높았다. 잎의 엽록소 a와 b 및 전체엽록소 함량은 상대광도가 낮을수록 높아지는 경향을 나타내었다.

  • PDF

인삼생육의 최적광량에 관한 연구 (제2보) 인삼생육에 대한 최적광량의 년생간 차이에 관하여 (Studies on the Optimum Light Intensity for Growth of Panu ginseng (II) Study on the difference of the optimum light intensity for the growth of ginseng Plant accordingto the root age)

  • 이종철;천성기
    • Journal of Ginseng Research
    • /
    • 제6권2호
    • /
    • pp.149-153
    • /
    • 1982
  • To investigate the effect of light intensity on the growth of shoots and roots, water and chlorophyll contents in the ginseng leaf were determined at 5%, l0%, 20%, 30% light transmittance rate (LTR) with 1,2 and 4 year-old ginseng plants in the field. Stem length, size of the leaf, water and chlorophyll contents were decreased as the increase of the light intensity in all ages of ginseng plants. The degree of decrease was severe in the one year-old ginseng compared to that of 2, or 4 year-old ginseng, while there was no difference between the 2 and 4 year-old plants. Root weight per plant was highest at 5% LTR in the one year-old plants, while it was at 20% LTR in the 2 and 4 year-old plants. Generally, demand of light for the growth of one year-old ginseng was lower than those of 2 or 4 year-old plants there was no difference of it among the ginseng plants older than 2 years.

  • PDF

1 묘포의 광도및 토양함수량이 인삼의 생육에 미치는 영향 (Effect of Light Intensity and Soil Water Regimes on the Growth of Ginseng (Panax ginseng C. A. Meyer) Seedling.)

  • 이성식;이종화;박훈
    • Journal of Ginseng Research
    • /
    • 제8권1호
    • /
    • pp.65-74
    • /
    • 1984
  • This experiment was carried out to study the effects of light intensity and soil water regimes on the growth of ginseng seedling. The results were as follows: 1. The maximum light intensity and optimum temperature in 1,le photosynthesis of ginseng seedling were 10,000 lux and 23 $^{\circ}C$. Respiration rate was increased at high temperature. 2. Air and soil temperature under the shading were increased as the increase of light intensity but soil water contents were decreased as the increase of light intensity, whereas air and soil temperature were decreased as the increase of precipitation under the shade b5: soil water contents were increased as the increase of precipitation under the shade. 3. The higher the transmittance of the shade, the greater the specific leaf weight (S.L.W.) and stomatal density. In contrast, however, the contents of total chlorophyll, chlorophyll a and b, and stomatal length was decreased. There was no any significant difference light intensity of the a/b ratio of chlorophyll. 4. The highest photosynthesis was occurred in ginseng leaves grown under the shade 5% L.T.R. and net photosynthesis rates increased with increasing soil water contents. 5. Optimum condition for usable seedling yield were 5% L.T.R. and 3.3% precipitation under the shade. Useless seedling increased with increasing precipitation under the shade.

  • PDF

해양미세조류 Dunaliella Salina 최적 배양을 위한 연구: LED 조명, 온도, 광도 및 공기주입 속도에 따른 효과를 중심으로 (Optimum Cultivation Condition of Dunaliella Salina: Effects of Light Emitting Diode as a Lighting Source, Temperature, Light Intensity and Air Flow Rates)

  • 최보람;김동수;이태윤
    • 대한환경공학회지
    • /
    • 제34권9호
    • /
    • pp.630-636
    • /
    • 2012
  • 본 연구는 해양미세조류 Dunaliella salina을 LED 광원을 이용하여 배양한 연구로 배양에 필요한 최적의 파장, 광도, 공기공급속도 및 배양온도를 찾기 위하여 수행되었다. 낮은 배양온도에서보다는 높은 온도에서 성장이 빨랐으나, 본 실험에서는 $22^{\circ}C$에서 가장 잘 성장하는 것으로 확인되었다. LED 파장에 따른 성장실험에서는 백색 LED가 배양에 가장 효과적이었으며, 광도에 따른 실험에서는 실험 시 고려한 3가지 광도 중(3,000, 6,300, 8,000 Lux) 3,000 Lux에서 최대 세포농도인 1.30 g/L를 나타내었다. 공기공급속도의 증가는 Dunaliella salina의 성장속도와 반비례의 관계를 나타내었는데, 공기를 공급하지 않은 경우의 비증식속도 $1.12day^{-1}$와 비교하면 공기공급은 본 미세조류의 성장에 저해요인으로 작용함을 알 수 있었다.

LED의 파장 및 광도, 공기주입이 Pavlova lutheri와 Phaeodactylum tricornutum의 최적 성장에 미치는 영향 (Effect of Light-Emitting Diode Wavelength, Light Intensity and Air Flow Ration on Optimal Growth of Pavlova lutheri and Phaeodactylum tricornutum)

  • 최보람;김동수;이태윤
    • KSBB Journal
    • /
    • 제28권3호
    • /
    • pp.170-176
    • /
    • 2013
  • The purpose of this study was to determine optimum condition of Pavlova lutheri and Phaeodactylum tricornutum. Detailed studies were carried out on the effects of various wavelengths of light-emitting diodes (LEDs), light intensities and air flow rations. For the Pa. lutheri, cell growth rates and maximum cell concentrations were similar regardless of wavelengths and air flow rates. Among the different light intensities, cell concentration increased when light intensity of red LED increased. For Ph. tricornutum, red LED was found to be the most effective light source, and light intensity of 3,100 Lux resulted in the most effective for the cultivation of Ph. tricornutum. Different air flow rates were tested to overcome shading effects due to denser cell concentration in the solution. Aeration of 0.8 vvm was determined to be the optimum aeration rate for the cultivation of Ph. tricornutum. Especially, five and two times greater cell concentrations of Pa. lutheri and Ph. tricornutum, respectively, were observed when air was applied.

Porphyridium cruentum의 성장 및 당질 생산에 미치는 배양 조건의 영향 (Effect of Culture Conditions on Production of Polysaccharides and Growth Rate of Porphyridium cruentum)

  • 주동식;조순영
    • 한국수산과학회지
    • /
    • 제41권6호
    • /
    • pp.446-451
    • /
    • 2008
  • The growth of Porphyridium cruentum and its porphyran polysaccharide production were measured as functions of light intensity, temperature, light quality (fluorescent, blue, red, and green) and nitrate concentration. The optimum light intensity, temperature, and nitrate concentration for the growth of Porphyridium cruentum and for its polysaccharide production were 1,400 lx, $25^{\circ}C$, and 0.03%, respectively. The maximum cell concentration and polysaccharide content under the optimum conditions were 1.95 and 0.23 mg/mL, respectively. Light quality did not influence growth or polysaccharide production. The best results for growth and polysaccharide production were obtained using fluorescent light.

Paracyclopina nana (Crustacea, Cyclopoida)의 생존, 개체발생 및 생산력에 관한 조도의 영향: 실험실내 배양 (Effect of Light Intensity on Survival, Growth and Productivity of the Cyclopoid Copepod Paracyclopina nana: A Laboratory Study)

  • 이균우;강정훈;박흠기
    • 한국수산과학회지
    • /
    • 제44권6호
    • /
    • pp.671-676
    • /
    • 2011
  • To determine the optimum light intensity for mass culture of the brackish-water cyclopoid copepod Paracyclopina nana, survival, growth, and productivity of the copepod were examined at several light intensities (0, 10, 100, 500, 1,000 lx). The survival rate of P. nana from nauplius to adult decreased with increasing light intensity. The highest survival rate was found under the dark condition, with 61.7% surviving; no significant difference was observed between 0 and 10 lx (51.7%) and the lowest survival rate was with 100 lx (26.7%). Survival rates at 500 and 1,000 lx were significantly lower in comparison with other conditions. The developmental period from nauplius to copepodid (5.8 days) and to adult (11.8 days) at 10 lx was significantly shorter than in the other treatments. Daily mean nauplius production of adult females over 7 days at 0, 10 and 100 lx was significantly higher than at 500 and 1,000 lx. In the 1,000 lx treatment, 99% of the adult females died on the $14^{th}$ day. The optimum light intensity for the mass culture of P. nana could be 10 lx, which had no adverse effects on survival, development, or reproduction.

쥐오줌풀의 생육 및 뿌리수량에 미치는 광도와 온도의 영향 (Effects of Light Intensity and Temperature on Growth and Root Yield of Valeriana fauriei var. dasycarpa HARA)

  • 이종철;조장환;안대진;최영현
    • 한국약용작물학회지
    • /
    • 제4권1호
    • /
    • pp.7-11
    • /
    • 1996
  • 쥐오줌풀의 재배법 구명을 위한 기초자료를 얻고자 광도 및 온도가 쥐오줌풀의 생육 및 근수량에 미치는 영향을 조사하였던 바 그결과는 다음과 같다. 1. 온도 및 광도와 쥐오줌풀 잎의 광합성간에는 고도로 유의한 2차곡선회귀가 인정되었으며, 이 회귀식에 의해 산출된 최대광합성을 위한 광도는 40,000Lux, 온도는 $17.7^{\circ}C$이었다. 2. 쥐오줌풀의 뿌리수량은 고냉지인 진부에서는 차광구에 비해 무차광구에서 증가하였으나 평야지인 음성에서는 오히려 차광구에서 증가되었다. 또한 지역간의 뿌리수량은 음성에서 보다는 진부에서 많았다. 3. 온도와 쥐오줌풀의 엽폭 및 근중간에는 각각 고도로 유의한 2차곡선회귀가 인정되었으며 이 회귀식에 의해 산출한 근생장(根生長)의 최적온도는 약 $20.3^{\circ}C$이었다.

  • PDF