• Title/Summary/Keyword: Optimum grinding conditions

Search Result 54, Processing Time 0.022 seconds

Current Status and Utilization Technology of End-of-Life Photovoltaic Modules (태양광 폐 모듈의 처리현황 및 실용화 기술)

  • Cho, Jai Young;Park, Areum;Yun, Hyun Mok;Jun, Yun-Su;Kim, Joon Soo
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.15-30
    • /
    • 2020
  • Recently, it is increasing a amount of installed solar-cell rapidly, and end-of-life photovoltaic(ELP) modules are generated in according to the reduction of cell efficiency largely. Recycling of ELP modules are begun at an advanced nation already, but there are bring about environmental contamination and resource recovery problems owing to not treated ELP modules because of economic cost completely. First of all, there were researched basic study for treatment conditions of used solar cell inspection, dismantling of aluminum frame, crushing / grinding & separation of tempered glass, removal of back sheet & EVA film, leaching & precipitation recovery of valuable metals and treatment of waste water. Therefore, we establish optimum conditions through carried out of designed apparatus, installation of equipment, test operation & trouble shooting in scale of 1ton/day pilot plant test. Following to economic review, it does have the economic efficiency until to the case of tempered glass recovery, but does not have the economic value in case of total processes until to recover the valuable metals. However, there are guaranteed economic value if we are gained a large amount of the expenses through EPR supported system. It was confirmed the commercialized possibility of ELP modules recycling if there were established on the collecting ELP modules, reusing criteria, economical technology, enactment of directives and enforcement of EPR supported system efficiently.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

Thermoelectric Characteristics of the p-type $(Bi,Sb)_2Te_3$ Nano-Bulk Hot-Pressed with Addition of $ZrO_2$ as Nano Inclusions ($ZrO_2$를 나노개재물로 첨가한 p형 $(Bi,Sb)_2Te_3$ 나노벌크 가압소결체의 열전특성)

  • Yeo, Y.H.;Kim, M.Y.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.51-57
    • /
    • 2010
  • Thermoelectric properties of the p-type $(Bi,Sb)_2Te_3$, hot-pressed with the $(Bi,Sb)_2Te_3$ powders fabricated by melting/grinding method, were characterized with variation of the hot-pressing conditions. Thermoelectric characteristics of the hot-pressed $(Bi,Sb)_2Te_3$ were also analyzed with addition of $ZrO_2$ as nano inclusions. With increasing the hotpressing temperature from $350^{\circ}C$ to $550^{\circ}C$, Seebeck coefficient and electrical resistivity decreased from 275 ${\mu}V$/K to 230 ${\mu}V$/K and 6.68 $m{\Omega}$-cm to 1.86 $m{\Omega}$-cm, respectively. The power factor decreased with addition of $ZrO_2$ nano powders more than 1 vol%, implying that the optimum amount of $ZrO_2$ nano inclusions to get a maximum power factor would be less than 1 vol%.

STUDIES ON THE EXTRACTION OF SEAWEED PROTEINS 1. Extraction of Water Soluble Proteins (해조단백질의 추출에 관한 연구 1. 수용성 단백질의 추출)

  • RYU Hong-Soo;LEE Kang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.3
    • /
    • pp.151-162
    • /
    • 1977
  • Distribution of marine algae is diverse in Korea and the resource of edible algae is abundant marking 239,037 tons of yearly production in 1976. They have been known as a protein source and used as a supplement in Korean diet. It is necessary to estimate the potentiality and properties of usable algal proteins especially as food resources and studies of extraction and separation of the proteins, therefore, are basically required for this purpose. In this study, the influence of various factors including the sample treatment, extraction time and temperature, sample us extraction solvent ratio and pH upon the extractability of the water soluble protein was determined. And the effect of precipitation treatment for isolation of the algal protein from the extracts was also tested. Nine species of algae, the major ones in consumption as food namely Porphyra suborbiculata, Undaria pinnatifida, Hizikia fusiforme, Sargassum fulvellu, Enteromorpha linza, Codium fragile, Sargassum kjellmanianum and Ulva pertusa were collected as fresh from Kijang, Yangsan Gun, in the vicinity of Busan city. The content of crude protein $(N\times6.25)$ of the algae ranged from $9.46\%\;to\;24.14\% showing the highest value in Porphyra suborbiculata and the minimum in Hizikia fusiforme. In the effort of maceration of blending methods on the extractability, immersion freezing in dry ice-methanol solution appeared most effective yielding 1.5 to 2.5 times extractability than that of the mortar grinding method. The effect of the ratio of sample vs solvent on extractability differed from species. It was enhanced at the ratio of 1:20 (w/v) in Ulva pertusa and Enteromorpha linza while the ratio was 1:30 (w/v) for Cedium fragile, Undaria pinnatifida, Hizikia fusiferme, Sargassum fulvellum and Porphyra suborbiculata and 1:40 for Sargassum kjellmanianum respectively. The effect of extraction time and temperature was revealed differently from species which might be caused by differences in the constitution of algal tissues resulting in that the extraction for 1 hour at $50^{\circ}C$ gave the maximum extractabilily in Ulva pertusa and Enteromorpha linza, 2 hours in Porphyra suborbiculata, Hikikia fusiforme, Undaria pinnatifida, Sargassum kjellmanianum and 3 hours in Codium fragile. And the extractability was higher at $50^{\circ}C$ to $60^{\circ}C$ for the most of the tested samples except Hizikia fusiforme. The optimum pH for the extraction was 9 to 12. The recovery of extractable nitrogen to the total nitrogen was $63\%$ in average with the first extracts and $8.6\%$ with the second extracts respectively. Both extracts were prepared by 2 hour extraction at $50{\pm}1^{\circ}C$ with dry ice-methanol frozen and seasand macerated materials. And these conditions assumed to be an optimum for the extraction of water soluble algal proteins since the nitrogen content after the first extraction covered $90\%$ of the total water extractable nitrogen. In the precipitation of the extracted proteins, Barnstein method and methanol treatment seemed to be more efficient than other precipitation methods.

  • PDF