• Title/Summary/Keyword: Optimum formula

Search Result 214, Processing Time 0.028 seconds

Optimum Nutrient Solution Strength for Korean Strawberry Cultivar 'Daewang' during Seedling Period (국내 육성 신품종 딸기 '대왕'의 육묘기 적정 배양액 농도)

  • Jun, Ha Joon;Jeon, Eui Hwan;Kang, Soo In;Bae, Geun Hye
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.812-818
    • /
    • 2014
  • Raising seedlings is important for fruit crops and is especially significant for strawberries as it accounts for 80% of their cultivation. However, there are few studies on raising seedlings of strawberries by hydroponics. Since strawberries show clear differences in growth characteristics based on cultivar, it is necessary to develop suitable fertilizer formula, concentration and pH for each cultivar, and also to examine the amount of nutrient feeding appropriate for each medium type. A key to raising seedlings of strawberries by hydroponics is the development of strategies to manage the concentration of nutrient solution. The mother plants of 'Daewang' strawberries were planted on hydroponics benches filled with cocopeat on March 28, 2012. Three nutrient solution treatments were employed during the term of raising seedlings: a type that supplied EC $0.6dS{\cdot}m^{-1}$ nutrient solution for 30 days and only water for 20 days [0.6 (30) + 20]; a type that supplied EC $1.2dS{\cdot}m^{-1}$ nutrient solution for 30 days and only water for 20 days [1.2 (30) + 20]; and a type that supplied EC $1.2dS{\cdot}m^{-1}$ nutrient solution for 50 days [1.2 (50)]. The plants were then planted on hydroponics benches filled with cocopeat on September 20, and managed with EC $0.6-0.8dS{\cdot}m^{-1}$ strawberry nutrient solution developed by Yamazaki. After planting, shoot growth, flowering rate and fruit quality of the first cluster were investigated. The petiole length, leaf length, leaf width and crown diameter showed the highest grown in the [1.2 (50)] treatment, followed by [1.2 (30) + 20], and then [0.6 (30) + 20], indicating that the higher concentration of nutrient solution was preferable for raising seedlings. However, the growth differences among treatments gradually disappeared as growth continued, and the crown diameter especially grew to exhibit almost no difference at all among treatments. The point of flowering came first in [0.6 (30) + 20], followed by [1.2 (30) + 20] and then [1.2 (50)]. The [0.6 (30) + 20] treatment showed much earlier flowering than other treatments, which implies that low-concentration nutrient solution may be beneficial to the flowering of 'Daewang' strawberries while raising seedlings. There was no statistically significant difference among treatments in fruit length, fruit diameter and fruit firmness. Fruit weight in [1.2 (50)] treatment was significantly higher than other treatments. However, soluble solids of fruit was the lowest in [1.2 (50)] treatment. Together, the results of this experiment imply that it is better to supply EC $0.6dS{\cdot}m^{-1}$ solution for 30 days and then supply only water for 20 days to adequately manage concentration of nutrient solutions during the period of raising seedlings of strawberries by hydroponics.

An Optimum Harvest Time for Making Grinded Silage of Barley and Wheat for Whole Crop (총체맥류 분쇄 사일리지 조제를 위한 적정 수확시기)

  • Song, Tae-Hwa;Kang, Chon-Sik;Cheong, Young-Keun;Park, Jong-Ho;Park, Tae-Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.4
    • /
    • pp.264-270
    • /
    • 2017
  • This study was carried out to investigate the optimal harvesting time, feed value and fermentation quality of barley and wheat for the making of chopped whole crop silage substitute for formula feed. As a result, the moisture content of barley and wheat decreased with a late harvest, and barley progressed faster than wheat. The plant height was similar with harvesting time, and the number of spikes decreased with prolonged period after heading. The dry matter yield and TDN yield of barley harvested at 35 and 40 days after heading were significantly higher than those at 30 days after heading and wheat was significantly higher at 40 and 45 days than at 35 day after heading(p<0.05). Crude protein content of barley and wheat were increased with later harvesting time, and crude fiber, crude fat and crude ash were slightly decreased, but not statistically significant. NDF and ADF content of barley decreased with later harvesting time, and those showed similar level in wheat. TDN content of barely was slightly increased but there was no difference in wheat. Comparing the effects of fermentation on feed value of chopped whole crop silage, the approximate compositions were slightly increased after fermentation, but the difference was not significant. Fermentations resulted in increasing the pH value of barley silage with late harvesting time, but decreasing the lactic acid content(p<0.05). A pH value of wheat silage showed similar level in different harvest time, and lactic acid content was decreased. Considering the quantity and quality of fermentation, barley and wheat can be used for making chopped silage of whole crop silage when they were harvested at 35 days and 40~45 days after heading, respectively.

Effects of Additives on Quality Attributes of Minced Ginger During Refrigerated Storage (첨가물이 냉장 중 생강 다대기의 품질특성에 미치는 영향)

  • Choi, Min-Seek;Kim, Dong-Ho;Lee, Kyung-Hae;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1048-1056
    • /
    • 2002
  • Quality of fresh ginger deteriorates rapidly during low temperature storage, and its storage life is short due to sprouting and microbial spoilage. The objectives of this research were to develop, using additives, a minced ginger product, which could maintain acceptable quality for over 30 days, and to investigate its quality changes during the cold storage. Storage stability of minced ginger product was investigated from the standpoint of the inhibition of brown discoloration, gas formation and liquid-solid separation. Fresh ginger was peeled and ground to produce minced ginger (control). Sodium bisulfite, L-cysteine, NaCl, sodium benzoate, modified starch, and/or xanthan gum were added to the control to minimize quality loss during storage, and to develop an optimum formula (A) of minced ginger. Samples were packed in Nylon/PE films, stored at $5^{\circ}C$, sampled at a 30-day interval, and subjected to quality evaluations. Changes in pH, surface color, gas formation, liquid-solid separation, contents of free amino acids, free sugars, organic acids, and fatty acids were determined. Gas formation was effectively inhibited in samples with sodium benzoate and/or NaCl. Samples with xanthan gum did not result in liquid-solid separation. L-Cysteine and sodium bisulfite were effective in controlling discoloration. pH decreased during storage in all samples, except sample A. Organic acid contents of all samples increased during storage, with lactic acid content showing the highest increase. Free amino acid content decreased with increasing storage time. Free sugar content of all samples decreased during storage. Sensory results showed sample A maintained acceptable quality until 90 days of storage. These results suggest that quality of minced ginger could be successfully maintained with the additions of selected additives for up to 90 days.

Current Status and Perspectives in Varietal Improvement of Rice Cultivars for High-Quality and Value-Added Products (쌀 품질 고급화 및 고부가가치화를 위한 육종현황과 전망)

  • 최해춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.15-32
    • /
    • 2002
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s-1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great progress and success was obtained in development of high-quality japonica cultivars and quality evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice cultivars and special rices adaptable for food processing such as large kernel, chalky endosperm, aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer, Recently, new special rices such as extremely low-amylose dull or opaque non-glutinous endosperm mutants were developed. Also, a high-lysine rice variety was developed for higher nutritional utility. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and texture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak, hot paste and consistency viscosities of viscosities with year difference. The high-quality rice variety "IIpumbyeo" showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic microscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high probability of determination. The $\alpha$-amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were IIpumbyeo, Chucheongyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tonsil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, showed the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogradation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice breed. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large grain rices showed better suitability far fermentation and brewing. The glutinous rice were classified into nine different varietal groups based on various physicochemical and structural characteristics of endosperm. There was some close associations among these grain properties and large varietal difference in suitability to various traditional food processing. Our breeding efforts on improvement of rice quality for high palatability and processing utility or value-adding products in the future should focus on not only continuous enhancement of marketing and eating qualities but also the diversification in morphological, physicochemical and nutritional characteristics of rice grain suitable for processing various value-added rice foods.ice foods.